public void ReturnEvaluatedIndividual(Individual cur)
        {
            cur.ID = _individualsEvaluated;
            _individualsEvaluated++;

            cur.Features = new double[featureNames.Length];
            for (int i = 0; i < featureNames.Length; i++)
            {
                cur.Features[i] = cur.GetStatByName(featureNames[i]);
            }

            _featureMap.Add(cur);
            _map_log.UpdateLog();
        }
 protected override StageResult Init()
 {
     if (!Success(base.Init(), out StageResult r))
     {
         return(r);
     }
     FeatureMap.Add(0, "TEXT");
     FeatureMap.Add(1, "LEXICAL");
     FeatureMap.Add(2, "SYNTACTIC");
     if (WithSyntaxFeatures)
     {
         Info("Selecting syntactic features.");
     }
     return(StageResult.SUCCESS);
 }
Esempio n. 3
0
        private void CalculateFitness(Individual cur)
        {
            cur.RawFitness = cur.TotalHealthDifference;
            cur.Features   = new [] { cur.DamageDone, cur.NumTurns };
            Console.WriteLine("Raw Fitness: " + cur.RawFitness);

            if (_featureMap.Add(cur))
            {
                // Reassess the fitness of all elements
                var queue = new Queue <Shard>();
                while (!_populationDeque.IsEmpty)
                {
                    Shard curShard = _populationDeque.DeleteMax();
                    curShard.Representative.Fitness =
                        -_featureMap.GetRank(curShard.Representative);
                    queue.Enqueue(curShard);
                }

                while (queue.Count > 0)
                {
                    Shard curShard = queue.Dequeue();
                    _populationDeque.Add(curShard);
                }
            }
            cur.Fitness = -_featureMap.GetRank(cur);
            Console.WriteLine("Fitness: " + cur.Fitness);

            // Save stats
            bool didHitMaxWins =
                cur.WinCount > _maxWins;
            bool didHitMaxFitness =
                cur.RawFitness > _maxFitness;

            _maxWins    = Math.Max(_maxWins, cur.WinCount);
            _maxFitness = Math.Max(_maxFitness, cur.RawFitness);

            // Log individual
            if (didHitMaxWins)
            {
                _champion_log.LogIndividual(cur);
            }
            if (didHitMaxFitness)
            {
                _fittest_log.LogIndividual(cur);
            }
        }
        public void ReturnEvaluatedIndividual(Individual ind)
        {
            ind.ID = _individualsEvaluated;
            _individualsEvaluated++;

            ind.Features = new double[_params.Map.Features.Length];
            for (int i = 0; i < _params.Map.Features.Length; i++)
            {
                ind.Features[i] = ind.GetStatByName(_params.Map.Features[i].Name);
            }

            _featureMap.Add(ind);
            if (_individualsEvaluated % 100 == 0)
            {
                _map_log.UpdateLog();
            }
        }
Esempio n. 5
0
        public List <int> MapFeatures(string[] features)
        {
            var posFeatureIds = new List <int>();

            foreach (var feature in features)
            {
                if (FeatureMap.ContainsKey(feature))
                {
                    posFeatureIds.Add(FeatureMap[feature]);
                }
                else
                {
                    FeatureMap.Add(feature, EntryCount);
                    posFeatureIds.Add(EntryCount);
                    EntryCount++;
                }
            }
            return(posFeatureIds);
        }
Esempio n. 6
0
        public void ReturnEvaluatedIndividual(Individual ind)
        {
            ind.ID = _individualsEvaluated;
            _individualsEvaluated++;

            ind.Features = new double[_params.Map.Features.Length];
            for (int i = 0; i < _params.Map.Features.Length; i++)
            {
                ind.Features[i] = ind.GetStatByName(_params.Map.Features[i].Name);
            }

            _maxFitness = Math.Max(_maxFitness, ind.Fitness);
            _featureMap.Add(ind);

            if (_individualsEvaluated % _params.Map.MapLoggingFrequency == 0)
            {
                _map_log.UpdateLog();
            }

            if (_individualsEvaluated % _params.Map.SummaryLoggingFrequency == 0)
            {
                _summary_log.UpdateLog(_individualsEvaluated);
            }
        }
Esempio n. 7
0
        public void ReturnEvaluatedIndividual(Individual ind)
        {
            bool didAdd = _featureMap.Add(ind);

            if (ind.Generation != _generation)
            {
                return;
            }

            if (didAdd)
            {
                if (ind.IsNovel)
                {
                    _novel_parents.Add(ind);
                }
                else
                {
                    _improved_parents.Add(ind);
                }
            }
            _individualsEvaluated++;
            _population_count++;

            if (_population_count >= _params.PopulationSize)
            {
                int  numParents   = _novel_parents.Count + _improved_parents.Count;
                bool needsRestart = numParents == 0;

                // Only update if we have parents.
                if (numParents > 0)
                {
                    var parents = _novel_parents.OrderByDescending(o => o.Delta).Concat(
                        _improved_parents.OrderByDescending(o => o.Delta)).ToList();

                    // Calculate fresh weights for the number of elites found
                    var weights = LA.Vector <double> .Build.Dense(numParents);

                    for (int i = 0; i < numParents; i++)
                    {
                        weights[i] = Math.Log(numParents + 0.5) - Math.Log(i + 1);
                    }
                    weights /= weights.Sum();

                    // Dynamically update the hyperparameters for CMA-ES
                    double sumWeights = weights.Sum();
                    double sumSquares = weights.Sum(x => x * x);
                    double mueff      = sumWeights * sumWeights / sumSquares;
                    double cc         = (4 + mueff / _numParams) / (_numParams + 4 + 2 * mueff / _numParams);
                    double cs         = (mueff + 2) / (_numParams + mueff + 5);
                    double c1         = 2 / (Math.Pow(_numParams + 1.3, 2) + mueff);
                    double cmu        = Math.Min(1 - c1,
                                                 2 * (mueff - 2 + 1 / mueff) / (Math.Pow(_numParams + 2, 2) + mueff));
                    double damps = 1 + 2 * Math.Max(0, Math.Sqrt((mueff - 1) / (_numParams + 1)) - 1) + cs;
                    double chiN  = Math.Sqrt(_numParams) *
                                   (1.0 - 1.0 / (4.0 * _numParams) + 1.0 / (21.0 * Math.Pow(_numParams, 2)));

                    // Recombination of the new mean
                    LA.Vector <double> oldMean = _mean;
                    _mean = LA.Vector <double> .Build.Dense(_numParams);

                    for (int i = 0; i < numParents; i++)
                    {
                        _mean += DenseVector.OfArray(parents[i].ParamVector) * weights[i];
                    }

                    // Update the evolution path
                    LA.Vector <double> y = _mean - oldMean;
                    LA.Vector <double> z = _C.Invsqrt * y;
                    _ps = (1.0 - cs) * _ps + (Math.Sqrt(cs * (2.0 - cs) * mueff) / _mutationPower) * z;
                    double left = _ps.DotProduct(_ps) / _numParams /
                                  (1.0 - Math.Pow(1.0 - cs, 2 * _individualsEvaluated / _params.PopulationSize));
                    double right = 2.0 + 4.0 / (_numParams + 1.0);
                    double hsig  = left < right ? 1 : 0;
                    _pc = (1.0 - cc) * _pc + hsig * Math.Sqrt(cc * (2.0 - cc) * mueff) * y;

                    // Covariance matrix update
                    double c1a = c1 * (1.0 - (1.0 - hsig * hsig) * cc * (2.0 - cc));
                    _C.C *= (1.0 - c1a - cmu);
                    _C.C += c1 * _pc.OuterProduct(_pc);
                    for (int i = 0; i < _params.NumParents; i++)
                    {
                        LA.Vector <double> dv = DenseVector.OfArray(parents[i].ParamVector) - oldMean;
                        _C.C += weights[i] * cmu *dv.OuterProduct(dv) / (_mutationPower * _mutationPower);
                    }

                    if (checkStop(parents))
                    {
                        needsRestart = true;
                    }
                    else
                    {
                        _C.UpdateEigensystem();
                    }

                    // Update sigma
                    double cn          = cs / damps;
                    double sumSquarePs = _ps.DotProduct(_ps);
                    _mutationPower *= Math.Exp(Math.Min(1, cn * (sumSquarePs / _numParams - 1) / 2));
                }

                if (needsRestart)
                {
                    reset();
                }

                _generation++;
                _individualsDispatched = 0;
                _population_count      = 0;
                _novel_parents.Clear();
                _improved_parents.Clear();
            }
        }
Esempio n. 8
0
        public void Run()
        {
            _individualsEvaluated = 0;
            _maxWins        = 0;
            _maxFitness     = Int32.MinValue;
            _runningWorkers = new Queue <int>();
            _idleWorkers    = new Queue <int>();

            string boxesDirectory = "boxes/";
            string inboxTemplate  = boxesDirectory
                                    + "deck-{0,4:D4}-inbox.tml";
            string outboxTemplate = boxesDirectory
                                    + "deck-{0,4:D4}-outbox.tml";

            // Let the workers know we are here.
            string activeDirectory      = "active/";
            string activeWorkerTemplate = activeDirectory
                                          + "worker-{0,4:D4}.txt";
            string activeSearchPath = activeDirectory
                                      + "search.txt";

            using (FileStream ow = File.Open(activeSearchPath,
                                             FileMode.Create, FileAccess.Write, FileShare.None))
            {
                WriteText(ow, "MAP Elites");
                WriteText(ow, _configFilename);
                ow.Close();
            }

            Console.WriteLine("Begin search...");
            while (_individualsEvaluated < _params.NumToEvaluate)
            {
                // Look for new workers.
                string[] hailingFiles = Directory.GetFiles(activeDirectory);
                foreach (string activeFile in hailingFiles)
                {
                    string prefix = activeDirectory + "worker-";
                    if (activeFile.StartsWith(prefix))
                    {
                        string suffix   = ".txt";
                        int    start    = prefix.Length;
                        int    end      = activeFile.Length - suffix.Length;
                        string label    = activeFile.Substring(start, end - start);
                        int    workerId = Int32.Parse(label);
                        _idleWorkers.Enqueue(workerId);
                        _individualStable.Add(workerId, null);
                        File.Delete(activeFile);
                        Console.WriteLine("Found worker " + workerId);
                    }
                }

                // Dispatch jobs to the available workers.
                while (_idleWorkers.Count > 0)
                {
                    if (_individualsDispatched >= _params.InitialPopulation &&
                        _individualsEvaluated == 0)
                    {
                        break;
                    }

                    int workerId = _idleWorkers.Dequeue();
                    _runningWorkers.Enqueue(workerId);
                    Console.WriteLine("Starting worker: " + workerId);

                    Individual choiceIndividual =
                        _individualsDispatched < _params.InitialPopulation ?
                        Individual.GenerateRandomIndividual(_cardSet) :
                        _featureMap.GetRandomElite().Mutate();

                    string inboxPath = string.Format(inboxTemplate, workerId);
                    SendWork(inboxPath, choiceIndividual);
                    _individualStable[workerId] = choiceIndividual;
                    _individualsDispatched++;
                }

                // Look for individuals that are done.
                int numActiveWorkers = _runningWorkers.Count;
                for (int i = 0; i < numActiveWorkers; i++)
                {
                    int    workerId   = _runningWorkers.Dequeue();
                    string inboxPath  = string.Format(inboxTemplate, workerId);
                    string outboxPath = string.Format(outboxTemplate, workerId);

                    // Test if this worker is done.
                    if (File.Exists(outboxPath) && !File.Exists(inboxPath))
                    {
                        // Wait for the file to finish being written.
                        Console.WriteLine("Worker done: " + workerId);

                        ReceiveResults(outboxPath, _individualStable[workerId]);
                        _featureMap.Add(_individualStable[workerId]);
                        _idleWorkers.Enqueue(workerId);
                        _individualsEvaluated++;
                        _map_log.UpdateLog();
                    }
                    else
                    {
                        _runningWorkers.Enqueue(workerId);
                    }
                }

                Thread.Sleep(1000);
            }

            // Let the workers know that we are done.
            File.Delete(activeSearchPath);
        }
Esempio n. 9
0
        public void ReturnEvaluatedIndividual(Individual ind)
        {
            ind.ID = _individualsEvaluatedTotal;
            _individualsEvaluatedTotal++;

            // Update map information for comparison purposes
            ind.Features = new double[_params.Map.Features.Length];
            for (int i = 0; i < _params.Map.Features.Length; i++)
            {
                ind.Features[i] = ind.GetStatByName(_params.Map.Features[i].Name);
            }
            _featureMap.Add(ind);
            if (_individualsEvaluatedTotal % _params.Map.MapLoggingFrequency == 0)
            {
                _map_log.UpdateLog();
            }
            if (_individualsEvaluatedTotal % _params.Map.SummaryLoggingFrequency == 0)
            {
                _summary_log.UpdateLog(_individualsEvaluatedTotal);
            }

            // Store the best individual
            if (_bestIndividual == null || _bestIndividual.Fitness < ind.Fitness)
            {
                _bestIndividual = ind;
            }

            // Used for overflow only
            if (ind.Generation != _generation)
            {
                return;
            }

            // Note that we don't use overflow individuals in adaptation calculations.
            _individualsEvaluated++;
            _population.Add(ind);
            if (_population.Count >= _params.PopulationSize)
            {
                // Rank solutions
                var parents = _population.OrderByDescending(o => o.Fitness)
                              .Take(_params.NumParents).ToList();

                // Recombination of the new mean
                LA.Vector <double> oldMean = _mean;
                _mean = LA.Vector <double> .Build.Dense(_numParams);

                for (int i = 0; i < _params.NumParents; i++)
                {
                    _mean += DenseVector.OfArray(parents[i].ParamVector) * _weights[i];
                }

                // Update the evolution path
                LA.Vector <double> y = _mean - oldMean;
                LA.Vector <double> z = _C.Invsqrt * y;
                _ps = (1.0 - _cs) * _ps + (Math.Sqrt(_cs * (2.0 - _cs) * _mueff) / _mutationPower) * z;
                double left = _ps.DotProduct(_ps) / _numParams
                              / (1.0 - Math.Pow(1.0 - _cs, 2 * _individualsEvaluated / _params.PopulationSize));
                double right = 2.0 + 4.0 / (_numParams + 1.0);
                double hsig  = left < right ? 1 : 0;
                _pc = (1.0 - _cc) * _pc + hsig * Math.Sqrt(_cc * (2.0 - _cc) * _mueff) * y;

                // Covariance matrix update
                double c1a = _c1 * (1.0 - (1.0 - hsig * hsig) * _cc * (2.0 - _cc));
                _C.C *= (1.0 - c1a - _cmu);
                _C.C += _c1 * _pc.OuterProduct(_pc);
                for (int i = 0; i < _params.NumParents; i++)
                {
                    LA.Vector <double> dv = DenseVector.OfArray(parents[i].ParamVector) - oldMean;
                    _C.C += _weights[i] * _cmu *dv.OuterProduct(dv) / (_mutationPower * _mutationPower);
                }

                if (CheckStop(parents))
                {
                    Reset();
                }
                _C.UpdateEigensystem();

                // Update sigma
                double cn          = _cs / _damps;
                double sumSquarePs = _ps.DotProduct(_ps);
                _mutationPower *= Math.Exp(Math.Min(1, cn * (sumSquarePs / _numParams - 1) / 2));

                _generation++;
                _individualsDispatched = 0;
                _population.Clear();
            }
        }