Esempio n. 1
0
        public void ConstructorTest()
        {
            var F = new FDistribution(degrees1: 8, degrees2: 5);

            double mean   = F.Mean;                                     // 1.6666666666666667
            double median = F.Median;                                   // 1.0545096252132447
            double var    = F.Variance;                                 // 7.6388888888888893

            double cdf  = F.DistributionFunction(x: 0.27);              // 0.049463408057268315
            double pdf  = F.ProbabilityDensityFunction(x: 0.27);        // 0.45120469723580559
            double lpdf = F.LogProbabilityDensityFunction(x: 0.27);     // -0.79583416831212883

            double ccdf = F.ComplementaryDistributionFunction(x: 0.27); // 0.95053659194273166
            double icdf = F.InverseDistributionFunction(p: cdf);        // 0.27

            double hf  = F.HazardFunction(x: 0.27);                     // 0.47468419528555084
            double chf = F.CumulativeHazardFunction(x: 0.27);           // 0.050728620222091653

            string str = F.ToString(CultureInfo.InvariantCulture);      // F(x; df1 = 8, df2 = 5)

            Assert.AreEqual(1.6666666666666667, mean);
            Assert.AreEqual(1.0545096252132447, median);
            Assert.AreEqual(7.6388888888888893, var);
            Assert.AreEqual(0.050728620222091653, chf);
            Assert.AreEqual(0.049463408057268315, cdf);
            Assert.AreEqual(0.45120469723580559, pdf);
            Assert.AreEqual(-0.79583416831212883, lpdf);
            Assert.AreEqual(0.47468419528555084, hf);
            Assert.AreEqual(0.95053659194273166, ccdf);
            Assert.AreEqual(0.27, icdf);
            Assert.AreEqual("F(x; df1 = 8, df2 = 5)", str);
        }
Esempio n. 2
0
        /// <summary>
        ///   Creates a new F-Test for a given statistic
        ///   with given degrees of freedom.
        /// </summary>
        ///
        /// <param name="statistic">The test statistic.</param>
        /// <param name="d1">The degrees of freedom for the numerator.</param>
        /// <param name="d2">The degrees of freedom for the denominator.</param>
        ///
        public FTest(double statistic, int d1, int d2)
            : base(statistic)
        {
            base.Hypothesis = Hypothesis.OneUpper;

            StatisticDistribution = new FDistribution(d1, d2);
            PValue = 1.0 - StatisticDistribution.DistributionFunction(statistic);
        }
Esempio n. 3
0
        public void DistributionFunctionTest()
        {
            FDistribution f = new FDistribution(2, 3);

            Assert.AreEqual(f.DegreesOfFreedom1, 2);
            Assert.AreEqual(f.DegreesOfFreedom2, 3);

            double expected = 0.350480947161671;
            double actual   = f.DistributionFunction(0.5);

            Assert.AreEqual(expected, actual, 1e-6);
        }
Esempio n. 4
0
        public void ConstructorTest()
        {
            var F = new FDistribution(degrees1: 8, degrees2: 5);

            double mean   = F.Mean;                                     // 1.6666666666666667
            double median = F.Median;                                   // 1.0545096252132447
            double var    = F.Variance;                                 // 7.6388888888888893
            double mode   = F.Mode;                                     // 0.5357142857142857

            double cdf  = F.DistributionFunction(x: 0.27);              // 0.049463408057268315
            double pdf  = F.ProbabilityDensityFunction(x: 0.27);        // 0.45120469723580559
            double lpdf = F.LogProbabilityDensityFunction(x: 0.27);     // -0.79583416831212883

            double ccdf = F.ComplementaryDistributionFunction(x: 0.27); // 0.95053659194273166
            double icdf = F.InverseDistributionFunction(p: cdf);        // 0.27

            double hf  = F.HazardFunction(x: 0.27);                     // 0.47468419528555084
            double chf = F.CumulativeHazardFunction(x: 0.27);           // 0.050728620222091653

            string str = F.ToString(CultureInfo.InvariantCulture);      // F(x; df1 = 8, df2 = 5)

            Assert.AreEqual(0, F.Support.Min);
            Assert.AreEqual(double.PositiveInfinity, F.Support.Max);

            Assert.AreEqual(F.InverseDistributionFunction(0), F.Support.Min);
            Assert.AreEqual(F.InverseDistributionFunction(1), F.Support.Max);

            Assert.AreEqual(1.6666666666666667, mean);
            Assert.AreEqual(1.0545096252132447, median);
            Assert.AreEqual(7.6388888888888893, var);
            Assert.AreEqual(0.5357142857142857, mode);
            Assert.AreEqual(0.050728620222091653, chf);
            Assert.AreEqual(0.049463408057268315, cdf);
            Assert.AreEqual(0.45120469723580559, pdf);
            Assert.AreEqual(-0.79583416831212883, lpdf);
            Assert.AreEqual(0.47468419528555084, hf);
            Assert.AreEqual(0.95053659194273166, ccdf);
            Assert.AreEqual(0.27, icdf);
            Assert.AreEqual("F(x; df1 = 8, df2 = 5)", str);

            var range1 = F.GetRange(0.95);
            var range2 = F.GetRange(0.99);
            var range3 = F.GetRange(0.01);

            Assert.AreEqual(0.27118653875813753, range1.Min);
            Assert.AreEqual(4.8183195356568689, range1.Max);
            Assert.AreEqual(0.15078805233761733, range2.Min);
            Assert.AreEqual(10.289311046135927, range2.Max);
            Assert.AreEqual(0.1507880523376173, range3.Min);
            Assert.AreEqual(10.289311046135927, range3.Max);
        }
Esempio n. 5
0
        public void DistributionFunctionTest3()
        {
            double[] cdf =
            {
                0,        0.0277778, 0.0816327, 0.140625, 0.197531, 0.25,
                0.297521,  0.340278,  0.378698, 0.413265, 0.444444
            };

            FDistribution target = new FDistribution(4, 2);

            for (int i = 0; i < 11; i++)
            {
                double x        = i / 10.0;
                double actual   = target.DistributionFunction(x);
                double expected = cdf[i];

                Assert.AreEqual(expected, actual, 1e-5);
                Assert.IsFalse(double.IsNaN(actual));
            }
        }
        public void Confirm_BetPrimeDistribution_Relative_to_F_Distribution()
        {
            double alpha = 4.0d;
            double beta  = 6.0d;

            FDistribution fdist = new FDistribution((int)alpha * 2, (int)beta * 2);
            double        fMean = fdist.Mean;
            double        fPdf  = (beta / alpha) * fdist.ProbabilityDensityFunction(4.0d);
            double        fCdf  = fdist.DistributionFunction(4.0d);

            var    betaPrimeDist = new BetaPrimeDistribution(alpha, beta);
            double bpMean        = (beta / alpha) * betaPrimeDist.Mean;
            double bpPdf         = betaPrimeDist.ProbabilityDensityFunction((alpha / beta) * 4.0d);
            double bpCdf         = betaPrimeDist.DistributionFunction((alpha / beta) * 4.0d);

            Assert.AreEqual(fMean, bpMean, 0.00000001, "mean should be equal");
            Assert.AreEqual(fPdf, bpPdf, 0.00000001, "probability density should be equal");
            Assert.AreEqual(fCdf, bpCdf, 0.00000001, "cumulative distribution should be equal");

            //Beta Prime distribution is a scaled version of Pearson Type VI, which itself is scale of F distribution
        }
Esempio n. 7
0
        public void ComplementaryDistributionFunctionTest()
        {
            double actual;
            double expected;

            int[]         nu1 = { 1, 2, 3, 4, 5 };
            int[]         nu2 = { 6, 7, 8, 9, 10 };
            double[]      x   = { 2, 3, 4, 5, 6 };
            double[]      cdf = { 0.7930, 0.8854, 0.9481, 0.9788, 0.9919 };
            FDistribution f;

            for (int i = 0; i < 5; i++)
            {
                f        = new FDistribution(nu1[i], nu2[i]);
                expected = cdf[i];

                actual = f.DistributionFunction(x[i]);
                Assert.AreEqual(expected, actual, 1e-4);

                f      = new FDistribution(nu2[i], nu1[i]);
                actual = f.ComplementaryDistributionFunction(1.0 / x[i]);
                Assert.AreEqual(expected, actual, 1e-4);
            }
        }