public (Vector <double>, Matrix <double>) Step(int t, Vector <double> y, Vector <double> xHat_, Matrix <double> kHat_, int n)
        {
            Vector <double>[] x_mod = new Vector <double> [n];
            Vector <double>[] y_mod = new Vector <double> [n];

            //Parallel.For(0, n, new ParallelOptions() {MaxDegreeOfParallelism = System.Environment.ProcessorCount }, i =>
            RandomVector <Normal> xHatDistr = new RandomVector <Normal>(xHat_, kHat_);

            for (int i = 0; i < n; i++)
            {
                x_mod[i] = xHatDistr.Sample();
                if (t > 0)
                {
                    x_mod[i] = Phi1(t, x_mod[i]) + Phi2(t, x_mod[i]) * W(t);
                }
                y_mod[i] = Psi1(t, x_mod[i]) + Psi2(t, x_mod[i]) * Nu(t);
            }
            //});

            Vector <double> f      = x_mod.Average();
            Matrix <double> kTilde = Exts.Cov(x_mod, x_mod);

            Vector <double>[] zetaTilde = new Vector <double> [n];
            for (int i = 0; i < n; i++)
            {
                zetaTilde[i] = Zeta(t, f, y_mod[i], kTilde);
            }


            Matrix <double> CovZetaTilde    = Exts.Cov(zetaTilde, zetaTilde);
            Matrix <double> InvCovZetaTilde = Matrix <double> .Build.Dense(CovZetaTilde.RowCount, CovZetaTilde.ColumnCount, 0.0);

            try
            {
                InvCovZetaTilde = CovZetaTilde.PseudoInverse();
            }
            catch (Exception e)
            {
                Console.WriteLine("Can't inverse ZetaTilde");
                Console.WriteLine(CovZetaTilde.ToString());
                Console.WriteLine(e.Message);
            }
            Matrix <double> H = Exts.Cov(x_mod.Subtract(f), zetaTilde) * InvCovZetaTilde;
            Vector <double> h = -H *zetaTilde.Average();

            Matrix <double> kHat = kTilde - Exts.Cov(x_mod.Subtract(f), zetaTilde) * H.Transpose();

            Vector <double> xHat__ = f + H * Zeta(t, f, y, kTilde) + h;

            return(xHat__, kHat);
        }
Esempio n. 2
0
        /// <summary>
        /// Provides the unscented transform estimate for the array X = [x_0,...,x_N] of random variable x samples
        /// given the array of observations Y = [y_0,...,y_N], where y_i = Phi(x_i) + Nu_i.
        /// Parameters of the unscented transform utParams should be initialized.
        /// </summary>
        /// <param name="Phi">Transformation: a nonlinear function which determines the transformation of the random vector variable: y = Phi(x) + nu</param>
        /// <param name="X">Array of initial variable x samples</param>
        /// <param name="Y">Array of transformed variable y = Phi(x) + nu samples</param>
        /// <param name="mX">Mean of x</param>
        /// <param name="KX">Cov of x</param>
        /// <param name="KNu">Cov of the noize nu</param>
        /// <param name="mErr_UT">Returns: estimation error mean vector</param>
        /// <param name="KErr_UT">Returns: estimation error covariance marix</param>
        /// <param name="KErrTh_UT">Returns: estimation error theoretical covariance marix</param>
        /// <returns>Array of estimates \hat{X} = [\hat{x}_0,...,\hat{x}_N]</returns>
        public Vector <double>[] Estimate(Func <Vector <double>, Vector <double> > Phi, Vector <double>[] X, Vector <double>[] Y, Vector <double> mX, Matrix <double> KX, Matrix <double> KNu,
                                          out Vector <double> mErr_UT, out Matrix <double> KErr_UT, out Matrix <double> KErrTh_UT)
        {
            UnscentedTransform.Transform(x => Phi(x), mX, KX, KNu, utParams, out Vector <double> M_UT, out Matrix <double> Kxy_UT, out Matrix <double> Kyy_UT);
            Matrix <double> P_UT = Kxy_UT * ((Kyy_UT).PseudoInverse());

            KErrTh_UT = KX - P_UT * Kyy_UT * P_UT.Transpose();

            Vector <double>[] Xhat_UT = Y.Select(y => mX + P_UT * (y - M_UT)).ToArray();
            Vector <double>[] Err_UT  = Xhat_UT.Subtract(X);
            mErr_UT = Err_UT.Average();
            KErr_UT = Exts.Cov(Err_UT, Err_UT);

            return(Xhat_UT);
        }
        /// <summary>
        /// Calculates the criterion value for the estimate given the particular unscented transform parameters
        /// </summary>
        /// <param name="Phi1">State transformation: a nonlinear function which determines the dynamics: x_{t+1} = Phi_1(x_t) + Phi_2(x_t) W_t</param>
        /// <param name="Phi2">Noise multiplicator in the dynamics equation: x_{t+1} = Phi(x_t) + W_t</param>
        /// <param name="Psi1">Observations transformation: a nonlinear function which determines the relation between the state and the observations: y_t = Psi_1(x_t) + Psi_2(x_t) Nu_t</param>
        /// <param name="Psi2">Noise multiplicator in the observations equation: y_t = Psi_1(x_t) + Psi_2(x_t) Nu_t</param>
        /// <param name="Mw">Mean of the noise in the dynamics equation </param>
        /// <param name="Rw">Covariance matrix of the state disturbances</param>
        /// <param name="Mnu">Mean of the noise in the obseration equation </param>
        /// <param name="Rnu">Convariance matrix of the observation noise</param>
        /// <param name="Crit">Criterion: a function which determines the quality of the unscented Kalman filter. Depends on the sample covariance of the estimation error on the last step: val = Crit(Cov(X_T-Xhat_T,X_T-Xhat_T))  </param>
        /// <param name="p1">Unscented transfrom parameters for the forecast phase</param>
        /// <param name="p2">Unscented transfrom parameters for the correction phase</param>
        /// <param name="T">The upper bound of the observation interval</param>
        /// <param name="models">Discrete vector model samples</param>
        /// <param name="xhat0">Initial condition</param>
        /// <param name="DX0Hat">Initial condition covariance</param>
        /// <returns>The criterion value for the particular unscented transform parameters</returns>
        public static double CalculateCriterionValue(Func <int, Vector <double>, Vector <double> > Phi1,
                                                     Func <int, Vector <double>, Matrix <double> > Phi2,
                                                     Func <int, Vector <double>, Vector <double> > Psi1,
                                                     Func <int, Vector <double>, Matrix <double> > Psi2,
                                                     Vector <double> Mw,
                                                     Matrix <double> Rw,
                                                     Vector <double> Mnu,
                                                     Matrix <double> Rnu,
                                                     Func <Matrix <double>, double> Crit,
                                                     UTParams p1,
                                                     UTParams p2,
                                                     int T,
                                                     DiscreteVectorModel[] models,
                                                     Vector <double> xhat0,
                                                     Matrix <double> DX0Hat
                                                     )
        {
            double crit = 0;

            try
            {
                int N = models.Count();

                Vector <double>[] xHatU = models.Select(x => xhat0).ToArray();
                Matrix <double>[] PHatU = models.Select(x => DX0Hat).ToArray();
                //Vector<double> PHatU = Vector<double>.Build.Dense(N, DX0Hat);



                for (int t = 1; t < T; t++)
                {
                    for (int i = 0; i < N; i++)
                    {
                        (xHatU[i], PHatU[i]) = Step(Phi1, Phi2, Psi1, Psi2, Mw, Rw, Mnu, Rnu, p1, p2, t, models[i].Trajectory[t][1], xHatU[i], PHatU[i]);
                    }

                    Vector <double>[] states     = models.Select(x => (x.Trajectory[t][0])).ToArray();
                    Matrix <double>   errorUPow2 = Exts.Cov(states.Subtract(xHatU), states.Subtract(xHatU));

                    crit = Crit(errorUPow2);
                }
            }
            catch (Exception e)
            {
                crit = double.MaxValue;
            }
            return(crit);
        }
        public void Initialize(int n, string outputFolder)
        {
            provider = new NumberFormatInfo();
            provider.NumberDecimalSeparator = ".";

            StaticVectorModel[] models = new StaticVectorModel[n];
            Vector <double>[]   X      = new Vector <double> [n];
            Vector <double>[]   Y      = new Vector <double> [n];
            Vector <double>[]   Xinv   = new Vector <double> [n];
            Vector <double>[]   YXinv  = new Vector <double> [n];
            for (int i = 0; i < n; i++)
            {
                models[i] = new StaticVectorModel(Phi, InvPhi, W, Nu);
                X[i]      = models[i].X;
                Y[i]      = models[i].Y;
                Xinv[i]   = models[i].Xinv;
                YXinv[i]  = models[i].YXinv;
            }

            Kxx = Exts.Cov(X, X);
            Kxy = Exts.Cov(X, YXinv);
            Kyy = Exts.Cov(YXinv, YXinv);
            My  = YXinv.Average();
            P   = Kxy * (Kyy.PseudoInverse());

            Kxy_inv = Exts.Cov(X, Xinv);
            Kyy_inv = Exts.Cov(Xinv, Xinv);
            My_inv  = Xinv.Average();
            P_inv   = Kxy_inv * (Kyy_inv.PseudoInverse());

            Kxy_lin = Exts.Cov(X, Y);
            Kyy_lin = Exts.Cov(Y, Y);
            My_lin  = Y.Average();
            P_lin   = Kxy_lin * (Kyy_lin.PseudoInverse());

            utStaticEstimate = new UTStaticEstimate(UTDefinitionType.ImplicitAlphaBetaKappa, OptimizationMethod.NelderMeed);
            utStaticEstimate.EstimateParameters(Phi, x => x.Trace(), X, Y, MX, KX, KNu, outputFolder);
            //utStaticEstimate.utParams = new UTParams(2, 0.5, 2.0, 1.0);
            using (System.IO.StreamWriter outputfile = new System.IO.StreamWriter(Path.Combine(outputFolder, "UTStaticEstimateParams.txt")))
            {
                outputfile.WriteLine(utStaticEstimate.utParams.ToString());
                outputfile.Close();
            }
        }
Esempio n. 5
0
        /// <summary>
        /// Calculates the criterion value for the estimate given the particular unscented transform parameters
        /// </summary>
        /// <param name="Phi">Transformation: a nonlinear function which determines the transformation of the random vector variable: y = Phi(x) + nu</param>
        /// <param name="Crit">Criterion: a function which determines the quality of the unscented transform estimate. Depends on the sample covariance of the estimation error: val = Crit(Cov(X-Xhat,X-Xhat))  </param>
        /// <param name="p">Unscented transform parameters</param>
        /// <param name="X">Array of initial variable x samples</param>
        /// <param name="Y">Array of transformed variable y = Phi(x) + nu samples</param>
        /// <param name="mX">Mean of x</param>
        /// <param name="KX">Cov of x</param>
        /// <param name="KNu">Cov of the noize nu</param>
        /// <returns>The criterion value for the particular unscented transform parameters</returns>
        public static double CalculateCriterionValue(Func <Vector <double>, Vector <double> > Phi, Func <Matrix <double>, double> Crit, UTParams p, Vector <double>[] X, Vector <double>[] Y, Vector <double> mX, Matrix <double> KX, Matrix <double> KNu)
        {
            double crit = 0;

            try
            {
                UnscentedTransform.Transform(x => Phi(x), mX, KX, KNu, p, out Vector <double> M_UT, out Matrix <double> Kxy_UT, out Matrix <double> Kyy_UT);
                Matrix <double> P_UT      = Kxy_UT * ((Kyy_UT).PseudoInverse());
                Matrix <double> KErrTh_UT = KX - P_UT * Kyy_UT * P_UT.Transpose();

                Vector <double>[] Xhat_UT = Y.Select(y => mX + P_UT * (y - M_UT)).ToArray();
                Vector <double>[] Err_UT  = Xhat_UT.Subtract(X);
                Vector <double>   mErr_UT = Err_UT.Average();
                Matrix <double>   KErr_UT = Exts.Cov(Err_UT, Err_UT);
                crit = Crit(KErr_UT);//.Trace();
            }
            catch { crit = double.MaxValue; }
            return(crit);
        }
        public void GenerateBundle(int n,
                                   out Vector <double> mErr, out Matrix <double> KErr, out Matrix <double> KErrTh,
                                   out Vector <double> mErr_inv, out Matrix <double> KErr_inv, out Matrix <double> KErrTh_inv,
                                   out Vector <double> mErr_lin, out Matrix <double> KErr_lin, out Matrix <double> KErrTh_lin,
                                   out Vector <double> mErr_UT, out Matrix <double> KErr_UT, out Matrix <double> KErrTh_UT,
                                   string fileName = null
                                   )
        {
            StaticVectorModel[] models = new StaticVectorModel[n];
            Vector <double>[]   X      = new Vector <double> [n];
            Vector <double>[]   Y      = new Vector <double> [n];
            Vector <double>[]   Xinv   = new Vector <double> [n];
            Vector <double>[]   YXinv  = new Vector <double> [n];
            for (int i = 0; i < n; i++)
            {
                models[i] = new StaticVectorModel(Phi, InvPhi, W, Nu);
                X[i]      = models[i].X;
                Y[i]      = models[i].Y;
                Xinv[i]   = models[i].Xinv;
                YXinv[i]  = models[i].YXinv;
            }

            Vector <double>[] Xhat = YXinv.Select(y => MX + P * (y - My)).ToArray();
            Vector <double>[] Err  = Xhat.Subtract(X);
            mErr = Err.Average();
            KErr = Exts.Cov(Err, Err);
            //KErrTh = KX - P * Kyy * P.Transpose();
            KErrTh = Kxx - P * Kyy * P.Transpose();

            Vector <double>[] Xhat_inv = Xinv.Select(y => MX + P_inv * (y - My_inv)).ToArray();
            Vector <double>[] Err_inv  = Xhat_inv.Subtract(X);
            mErr_inv = Err_inv.Average();
            KErr_inv = Exts.Cov(Err_inv, Err_inv);
            //KErrTh_inv = KX - P_inv * Kyy_inv * P_inv.Transpose();
            KErrTh_inv = Kxx - P_inv * Kyy_inv * P_inv.Transpose();

            Vector <double>[] Xhat_lin = Y.Select(y => MX + P_lin * (y - My_lin)).ToArray();
            Vector <double>[] Err_lin  = Xhat_lin.Subtract(X);
            mErr_lin = Err_lin.Average();
            KErr_lin = Exts.Cov(Err_lin, Err_lin);
            //KErrTh_lin = KX - P_lin * Kyy_lin * P_lin.Transpose();
            KErrTh_lin = Kxx - P_lin * Kyy_lin * P_lin.Transpose();

            Vector <double>[] Xhat_UT = utStaticEstimate.Estimate(Phi, X, Y, MX, KX, KNu, out mErr_UT, out KErr_UT, out KErrTh_UT);

            if (!string.IsNullOrWhiteSpace(fileName))
            {
                string X_head        = string.Join("; ", Enumerable.Range(0, X[0].Count).Select(i => $"X_{i}"));
                string Y_head        = string.Join("; ", Enumerable.Range(0, Y[0].Count).Select(i => $"Y_{i}"));
                string Xinv_head     = string.Join("; ", Enumerable.Range(0, Xinv[0].Count).Select(i => $"Xinv_{i}"));
                string Xhat_head     = string.Join("; ", Enumerable.Range(0, Xhat[0].Count).Select(i => $"Xhat_{i}"));
                string Xhat_inv_head = string.Join("; ", Enumerable.Range(0, Xhat_inv[0].Count).Select(i => $"Xhat_inv_{i}"));
                string Xhat_lin_head = string.Join("; ", Enumerable.Range(0, Xhat_lin[0].Count).Select(i => $"Xhat_lin_{i}"));
                string Xhat_UT_head  = string.Join("; ", Enumerable.Range(0, Xhat_lin[0].Count).Select(i => $"Xhat_UT_{i}"));

                using (System.IO.StreamWriter outputfile = new System.IO.StreamWriter(fileName))
                {
                    outputfile.WriteLine($"{X_head}; {Y_head}; {Xinv_head}; {Xhat_head}; {Xhat_inv_head}; {Xhat_lin_head}; {Xhat_UT_head}");
                    for (int i = 0; i < n; i++)
                    {
                        outputfile.WriteLine($"{X[i].ToLine()}; {Y[i].ToLine()}; {Xinv[i].ToLine()}; {Xhat[i].ToLine()}; {Xhat_inv[i].ToLine()}; {Xhat_lin[i].ToLine()}; {Xhat_UT[i].ToLine()}");
                    }
                    outputfile.Close();
                }
            }
        }
Esempio n. 7
0
        public void EstimateParameters(DiscreteVectorModel[] models, Vector <double> xhat0, int T)
        {
            int n_total = models.Count();

            Vector <double>[] xHat = Enumerable.Repeat(xhat0, n_total).ToArray();
            Console.WriteLine($"BCMNF estimate parameters start");
            DateTime start = DateTime.Now;

            for (int t = 1; t < T; t++) // start from 1 because for 0 we do not have observations
            {
                DateTime          startiteration = DateTime.Now;
                Vector <double>[] x     = new Vector <double> [n_total];
                Vector <double>[] y     = new Vector <double> [n_total];
                Vector <double>[] alpha = new Vector <double> [n_total];
                Vector <double>[] gamma = new Vector <double> [n_total];
                for (int i = 0; i < n_total; i++)
                {
                    x[i]     = models[i].Trajectory[t][0];
                    y[i]     = models[i].Trajectory[t][1];
                    alpha[i] = Alpha(t, xHat[i]);
                    gamma[i] = Gamma(t, xHat[i], y[i]);
                }

                Vector <double> mX     = x.Average();
                Vector <double> mAlpha = alpha.Average();
                Vector <double> mGamma = gamma.Average();

                Matrix <double> covXX         = Exts.Cov(x, x);
                Matrix <double> covAlphaAlpha = Exts.Cov(alpha, alpha);
                Matrix <double> covGammaGamma = Exts.Cov(gamma, gamma);

                Matrix <double> covXAlpha     = Exts.Cov(x, alpha);
                Matrix <double> covXGamma     = Exts.Cov(x, gamma);
                Matrix <double> covGammaAlpha = Exts.Cov(gamma, alpha);

                Matrix <double> invCovAlphaAlpha = covAlphaAlpha.Inverse(1e-32, 1e-32);
                //Matrix<double> invCovAlphaAlpha = covAlphaAlpha.PseudoInverse();


                Matrix <double> F        = covXAlpha * invCovAlphaAlpha;
                Vector <double> f        = mX - F * mAlpha;
                Matrix <double> kTildeXX = covXX - F * covXAlpha.Transpose();

                Matrix <double> H = covGammaAlpha * invCovAlphaAlpha;
                Vector <double> h = mGamma - H * mAlpha;

                Matrix <double> kTildeXGamma     = covXGamma - F * covGammaAlpha.Transpose();
                Matrix <double> kTildeGammaGamma = covGammaGamma - H * covGammaAlpha.Transpose();

                Matrix <double> invKTildeGammaGamma = kTildeGammaGamma.Inverse(1e-32, 1e-32);
                //Matrix<double> invKTildeGammaGamma = kTildeGammaGamma.PseudoInverse();

                Matrix <double> Gain = kTildeXGamma * invKTildeGammaGamma;

                Matrix <double> kHat = kTildeXX - Gain * kTildeXGamma.Transpose();

                for (int i = 0; i < n_total; i++)
                {
                    xHat[i] = F * alpha[i] + f + Gain * (gamma[i] - H * alpha[i] - h);
                }
                FHat.Add(t, F);
                fHat.Add(t, f);
                HHat.Add(t, H);
                hHat.Add(t, h);
                GainHat.Add(t, Gain);


                KTilde.Add(t, kTildeXX);
                KHat.Add(t, kHat);
                Console.WriteLine($"BCMNF estimate parameters for t={t}, done in {(DateTime.Now - startiteration).ToString(@"hh\:mm\:ss\.fff")}");
                x     = null;
                y     = null;
                alpha = null;
                gamma = null;
            }
            DateTime finish = DateTime.Now;

            Console.WriteLine($"BCMNF estimate parameters finished in {(finish - start).ToString(@"hh\:mm\:ss\.fff")}");
        }
        public void EstimateParameters(DiscreteVectorModel[] models, Vector <double> xhat0, int T)
        {
            //Func<Vector<double>, bool> Sifter = (x) => Math.Sqrt(x[0] * x[0] + x[1] * x[1]) > 1000.0;

            int n_total = models.Count();

            Vector <double>[] xHat = Enumerable.Repeat(xhat0, n_total).ToArray();
            //bool[] inUse = Enumerable.Repeat(true, n_total).ToArray();
            Console.WriteLine($"CMNF estimate parameters start");
            DateTime start = DateTime.Now;

            for (int t = 1; t < T; t++) // start from 1 because for 0 we do not have observations
            {
                //int n = inUse.Where(e => e).Count();
                DateTime          startiteration = DateTime.Now;
                Vector <double>[] x     = new Vector <double> [n_total];
                Vector <double>[] y     = new Vector <double> [n_total];
                Vector <double>[] xiHat = new Vector <double> [n_total];
                //int k = 0;
                for (int i = 0; i < n_total; i++)
                {
                    //if (inUse[i])
                    //{
                    x[i]     = models[i].Trajectory[t][0];
                    y[i]     = models[i].Trajectory[t][1];
                    xiHat[i] = Xi(t, xHat[i]);
                    // k++;
                    //}
                }

                Matrix <double> CovXiHat    = Exts.Cov(xiHat, xiHat);
                Matrix <double> InvCovXiHat = Matrix <double> .Build.Dense(CovXiHat.RowCount, CovXiHat.ColumnCount, 0.0);

                if (CovXiHat.FrobeniusNorm() > 0)
                {
                    try
                    {
                        InvCovXiHat = CovXiHat.PseudoInverse();
                        //InvCovXiHat = CovXiHat.Inverse(1e-32, 1e-32);
                    }
                    catch (Exception e)
                    {
                        Console.WriteLine("Can't inverse XiHat");
                        Console.WriteLine(CovXiHat.ToString());
                        Console.WriteLine(e.Message);
                    }
                }
                Matrix <double> F      = Exts.Cov(x, xiHat) * InvCovXiHat;
                Vector <double> f      = x.Average() - F * xiHat.Average();
                Matrix <double> kTilde = Exts.Cov(x, x) - F * Exts.Cov(x, xiHat).Transpose();

                Vector <double>[] xTilde             = new Vector <double> [n_total];
                Vector <double>[] zetaTilde          = new Vector <double> [n_total];
                Vector <double>[] delta_x_xTilde     = new Vector <double> [n_total];
                Matrix <double>[] delta_by_zetaTilde = new Matrix <double> [n_total];
                for (int i = 0; i < n_total; i++)
                {
                    xTilde[i]             = F * xiHat[i] + f;
                    zetaTilde[i]          = Zeta(t, xTilde[i], y[i], kTilde);
                    delta_x_xTilde[i]     = x[i] - xTilde[i];
                    delta_by_zetaTilde[i] = delta_x_xTilde[i].ToColumnMatrix() * zetaTilde[i].ToRowMatrix();
                }


                Matrix <double> CovZetaTilde    = Exts.Cov(zetaTilde, zetaTilde);
                Matrix <double> InvCovZetaTilde = Matrix <double> .Build.Dense(CovZetaTilde.RowCount, CovZetaTilde.ColumnCount, 0.0);

                try
                {
                    InvCovZetaTilde = CovZetaTilde.PseudoInverse();
                    //InvCovZetaTilde = CovZetaTilde.Inverse(1e-32, 1e-32);
                }
                catch (Exception e)
                {
                    Console.WriteLine("Can't inverse ZetaTilde");
                    Console.WriteLine(CovZetaTilde.ToString());
                    Console.WriteLine(e.Message);
                }
                var             delta_x = x.Subtract(xTilde);
                Matrix <double> H       = delta_by_zetaTilde.Average() * InvCovZetaTilde;
                Vector <double> h       = -H *zetaTilde.Average();

                Matrix <double> kHat = kTilde - Exts.Cov(delta_x, zetaTilde) * H.Transpose();

                //k = 0;
                for (int i = 0; i < n_total; i++)
                {
                    //if (inUse[i])
                    //{
                    xHat[i] = xTilde[i] + H * zetaTilde[i] + h;
                    //    inUse[i] = !Sifter(x[k] - xHat[k]);
                    //    k++;
                    //}
                }
                FHat.Add(t, F);
                fHat.Add(t, f);
                HHat.Add(t, H);
                hHat.Add(t, h);


                KTilde.Add(t, kTilde);
                KHat.Add(t, kHat);
                //KHat.Add(t, Exts.Cov(x, x) - Exts.Cov(x, xiHat) * F - Exts.Cov(x.Subtract(xTilde), zetaTilde) * H);
                // KHat.Add(t, cov(x, x) - cov(x, xiHat) * F - cov(x - xTilde, zetaTilde) * H);

                Matrix <double> I = Matrix <double> .Build.DenseIdentity(CovXiHat.RowCount);

                //Console.WriteLine();
                //Console.WriteLine($"cov_xi_{t} = {CovXiHat.ToMatlab()}");
                //Console.WriteLine();
                //Console.WriteLine($"inv_by_cov_xi_{t} = {(InvCovXiHat * CovXiHat).ToMatlab()}");
                //Console.WriteLine();
                //Console.WriteLine($"cov_zeta_{t} = {CovZetaTilde.ToMatlab()}");
                //Console.WriteLine();
                //Console.WriteLine($"inv_by_cov_zeta_{t} = {(InvCovZetaTilde * CovZetaTilde).ToMatlab()}");
                //Console.WriteLine();

                //Console.WriteLine();
                //Console.WriteLine($"$cov(\\hat{{\\xi}}_{{{t}}}, \\hat{{\\xi}}_{{{t}}}) = {CovXiHat.ToLatex("E3")}$");
                //Console.WriteLine();
                //Console.WriteLine($"$cov(\\hat{{\\xi}}_{{{t}}}, \\hat{{\\xi}}_{{{t}}}) \\cdot (cov(\\hat{{\\xi}}_{{{t}}}, \\hat{{\\xi}}_{{{t}}}))^{{-1}}  = {(InvCovXiHat * CovXiHat).ToLatex("F3")}$");
                //Console.WriteLine();
                //double diff_xi = (I - InvCovXiHat * CovXiHat).L2Norm();
                //Console.WriteLine($"$|| I - cov(\\hat{{\\xi}}_{{{t}}}, \\hat{{\\xi}}_{{{t}}}) \\cdot (cov(\\hat{{\\xi}}_{{{t}}}, \\hat{{\\xi}}_{{{t}}}))^{{-1}}||  = {diff_xi}$");
                //Console.WriteLine();
                //if (diff_xi > 0.001)
                //    Console.WriteLine("!!!");

                //Matrix<double> II = Matrix<double>.Build.DenseIdentity(CovZetaTilde.RowCount);

                //Console.WriteLine($"$cov(\\tilde{{\\zeta}}_{{{t}}}, \\tilde{{\\zeta}}_{{{t}}}) = {CovZetaTilde.ToLatex("E3")}$");
                //Console.WriteLine();
                //Console.WriteLine($"$cov(\\tilde{{\\zeta}}_{{{t}}}, \\tilde{{\\zeta}}_{{{t}}}) \\cdot (cov(\\tilde{{\\zeta}}_{{{t}}}, \\tilde{{\\zeta}}_{{{t}}}))^{{-1}}  = {(InvCovZetaTilde * CovZetaTilde).ToLatex("F3")}$");
                //Console.WriteLine();
                //double diff_zeta = (II - InvCovZetaTilde * CovZetaTilde).L2Norm();
                //Console.WriteLine($"$|| I - cov(\\tilde{{\\zeta}}_{{{t}}}, \\tilde{{\\zeta}}_{{{t}}}) \\cdot (cov(\\tilde{{\\zeta}}_{{{t}}}, \\tilde{{\\zeta}}_{{{t}}}))^{{-1}}||  = {diff_zeta}$");
                //Console.WriteLine();
                //if (diff_zeta > 0.001)
                //    Console.WriteLine("!!!");

                //Console.WriteLine($"$F_{{{t}}} = {F.ToLatex()}$");
                //Console.WriteLine($"$f_{{{t}}} = {f.ToLatex()}$");
                //Console.WriteLine($"$H_{{{t}}} = {H.ToLatex()}$");
                //Console.WriteLine($"$h_{{{t}}} = {h.ToLatex()}$");
                //Console.WriteLine($"$\\tilde{{K}}_{{{t}}} = {kTilde.ToLatex()}$");
                //Console.WriteLine($"$\\hat{{K}}_{{{t}}} = {kHat.ToLatex()}$");
                Console.WriteLine($"CMNF estimate parameters for t={t}, done in {(DateTime.Now - startiteration).ToString(@"hh\:mm\:ss\.fff")}");
                x     = null;
                y     = null;
                xiHat = null;
            }
            DateTime finish = DateTime.Now;

            Console.WriteLine($"CMNF estimate parameters finished in {(finish - start).ToString(@"hh\:mm\:ss\.fff")}");
        }
Esempio n. 9
0
        public (Vector <double>, Matrix <double>) Step(int t, Vector <double> y, Vector <double> xHat_, Matrix <double> kHat_)
        {
            Vector <double>[] x_mod     = new Vector <double> [Models.Count()];
            Vector <double>[] y_mod     = new Vector <double> [Models.Count()];
            Vector <double>[] xiHat_mod = new Vector <double> [Models.Count()];

            RandomVector <Normal> xHatDistr = new RandomVector <Normal>(xHat_, kHat_);

            int selected = 0;

            for (int i = 0; i < Models.Count(); i++)
            {
                //Models[i].Step();
                //if (Models[i].Trajectory[t][1].InBounds(y - SigmaNu, y + SigmaNu))
                //{
                //    x_mod[i] = Models[i].Trajectory[t][0];
                //    y_mod[i] = Models[i].Trajectory[t][1];
                //    xiHat_mod[i] = Xi(t, xHat[i]);
                //    selected++;
                //}
                //else
                //{
                x_mod[i] = xHatDistr.Sample();
                if (t > 0)
                {
                    x_mod[i] = Phi1(t, x_mod[i]) + Phi2(t, x_mod[i]) * W(t);
                }
                y_mod[i]     = Psi1(t, x_mod[i]) + Psi2(t, x_mod[i]) * Nu(t);
                xiHat_mod[i] = Xi(t, xHatDistr.Sample());
                //    Models[i].Trajectory[t][0] = x_mod[i];
                //    Models[i].Trajectory[t][1] = y_mod[i];
                //}
            }

            int good = 0;

            for (int i = 0; i < Models.Count(); i++)
            {
                if (y_mod[i].InBounds(y - SigmaNu, y + SigmaNu))
                {
                    good++;
                }
            }
            //Console.WriteLine($"selected: {selected}, total good: {good}");

            Matrix <double> CovXiHat    = Exts.Cov(xiHat_mod, xiHat_mod);
            Matrix <double> InvCovXiHat = Matrix <double> .Build.Dense(CovXiHat.RowCount, CovXiHat.ColumnCount, 0.0);

            if (CovXiHat.FrobeniusNorm() > 0)
            {
                try
                {
                    InvCovXiHat = CovXiHat.PseudoInverse();
                }
                catch (Exception e)
                {
                    Console.WriteLine("Can't inverse XiHat");
                    Console.WriteLine(CovXiHat.ToString());
                    Console.WriteLine(e.Message);
                }
            }
            Matrix <double> F      = Exts.Cov(x_mod, xiHat_mod) * InvCovXiHat;
            Vector <double> f      = x_mod.Average() - F * xiHat_mod.Average();
            Matrix <double> kTilde = Exts.Cov(x_mod, x_mod) - Exts.Cov(x_mod, xiHat_mod) * F.Transpose();

            Vector <double>[] xTilde    = new Vector <double> [Models.Count()];
            Vector <double>[] zetaTilde = new Vector <double> [Models.Count()];
            for (int i = 0; i < Models.Count(); i++)
            {
                xTilde[i]    = F * xiHat_mod[i] + f;
                zetaTilde[i] = Zeta(t, xTilde[i], y_mod[i], kTilde);
            }

            Matrix <double> CovZetaTilde    = Exts.Cov(zetaTilde, zetaTilde);
            Matrix <double> InvCovZetaTilde = Matrix <double> .Build.Dense(CovZetaTilde.RowCount, CovZetaTilde.ColumnCount, 0.0);

            try
            {
                InvCovZetaTilde = CovZetaTilde.PseudoInverse();
            }
            catch (Exception e)
            {
                Console.WriteLine("Can't inverse ZetaTilde");
                Console.WriteLine(CovZetaTilde.ToString());
                Console.WriteLine(e.Message);
            }
            Matrix <double> H = Exts.Cov(x_mod.Subtract(f), zetaTilde) * InvCovZetaTilde;
            Vector <double> h = -H *zetaTilde.Average();

            Matrix <double> kHat = kTilde - Exts.Cov(x_mod.Subtract(f), zetaTilde) * H.Transpose();

            Vector <double> xTilde__ = F * Xi(t, xHat_) + f;
            Vector <double> xHat__   = xTilde__ + H * Zeta(t, xTilde__, y, kTilde) + h;

            for (int i = 0; i < Models.Count(); i++)
            {
                xHat[i] = xTilde[i] + H * zetaTilde[i] + h;
            }

            return(xHat__, kHat);
        }