Esempio n. 1
0
        /// <summary>
        /// 3-d OLAP cube operator; Fills all cells of the given vectors into the given histogram.
        /// If you use Hep.Aida.Ref.Converter.ToString(histo) on the result, the OLAP cube of x-"column" vsd y-"column" vsd z-"column", summing the weights "column" will be printed.
        /// For example, aggregate sales by product by region by time.
        /// <p>
        /// Computes the distinct values of x and y and z, yielding histogram axes that capture one distinct value per bin.
        /// Then fills the histogram.
        /// </summary>
        /// <param name="x"></param>
        /// <param name="y"></param>
        /// <param name="z"></param>
        /// <param name="weights"></param>
        /// <returns>the histogram containing the cube.</returns>
        /// <excption cref="ArgumentException">if <i>x.Count != y.Count || x.Count != z.Count || x.Count != weights.Count</i>.</excption>
        public static Hep.Aida.IHistogram3D cube(DoubleMatrix1D x, DoubleMatrix1D y, DoubleMatrix1D z, DoubleMatrix1D weights)
        {
            if (x.Size != y.Size || x.Size != z.Size || x.Size != weights.Size)
            {
                throw new ArgumentException("vectors must have same size");
            }

            var epsilon  = 1.0E-9;
            var distinct = new DoubleArrayList();
            var vals     = new double[x.Size];
            var sorted   = new DoubleArrayList(vals);

            // compute distinct values of x
            vals = x.ToArray(); // copy x into vals
            sorted.Sort();
            Cern.Jet.Stat.Descriptive.Frequencies(sorted, distinct, null);
            // since bins are right-open [from,to) we need an additional dummy bin so that the last distinct value does not fall into the overflow bin
            if (distinct.Count > 0)
            {
                distinct.Add(distinct[distinct.Count - 1] + epsilon);
            }
            distinct.TrimToSize();
            Hep.Aida.IAxis xaxis = new Hep.Aida.Ref.VariableAxis(distinct.ToArray());

            // compute distinct values of y
            vals = y.ToArray();
            sorted.Sort();
            Cern.Jet.Stat.Descriptive.Frequencies(sorted, distinct, null);
            // since bins are right-open [from,to) we need an additional dummy bin so that the last distinct value does not fall into the overflow bin
            if (distinct.Count > 0)
            {
                distinct.Add(distinct[distinct.Count - 1] + epsilon);
            }
            distinct.TrimToSize();
            Hep.Aida.IAxis yaxis = new Hep.Aida.Ref.VariableAxis(distinct.ToArray());

            // compute distinct values of z
            vals = z.ToArray();
            sorted.Sort();
            Cern.Jet.Stat.Descriptive.Frequencies(sorted, distinct, null);
            // since bins are right-open [from,to) we need an additional dummy bin so that the last distinct value does not fall into the overflow bin
            if (distinct.Count > 0)
            {
                distinct.Add(distinct[distinct.Count - 1] + epsilon);
            }
            distinct.TrimToSize();
            Hep.Aida.IAxis zaxis = new Hep.Aida.Ref.VariableAxis(distinct.ToArray());

            Hep.Aida.IHistogram3D histo = new Hep.Aida.Ref.Histogram3D("Cube", xaxis, yaxis, zaxis);
            return(Histogram(histo, x, y, z, weights));
        }