public void Distance()
        {
            DistanceInput input = new DistanceInput();

            input.ProxyA     = new DistanceProxy(_polygonA, 0);
            input.ProxyB     = new DistanceProxy(_polygonB, 0);
            input.TransformA = _transformA;
            input.TransformB = _transformB;
            input.UseRadii   = true;
            DistanceGJK.ComputeDistance(ref input, out _, out _);
        }
Esempio n. 2
0
        public override void Update(GameSettings settings, GameTime gameTime)
        {
            base.Update(settings, gameTime);

            DistanceInput input = new DistanceInput();

            input.ProxyA     = new DistanceProxy(_polygonA, 0);
            input.ProxyB     = new DistanceProxy(_polygonB, 0);
            input.TransformA = _transformA;
            input.TransformB = _transformB;
            input.UseRadii   = true;
            SimplexCache cache = new SimplexCache();

            cache.Count = 0;
            DistanceOutput output;

            DistanceGJK.ComputeDistance(ref input, out output, out cache);

            DrawString($"distance = {output.Distance}");

            DrawString($"iterations = {output.Iterations}");

            DebugView.BeginCustomDraw(ref GameInstance.Projection, ref GameInstance.View);

            {
                Color     color = new Color(0.9f, 0.9f, 0.9f);
                Vector2[] v     = new Vector2[Settings.MaxPolygonVertices];
                for (int i = 0; i < _polygonA.Vertices.Count; ++i)
                {
                    v[i] = MathUtils.Mul(ref _transformA, _polygonA.Vertices[i]);
                }
                DebugView.DrawPolygon(v, _polygonA.Vertices.Count, color);

                for (int i = 0; i < _polygonB.Vertices.Count; ++i)
                {
                    v[i] = MathUtils.Mul(ref _transformB, _polygonB.Vertices[i]);
                }
                DebugView.DrawPolygon(v, _polygonB.Vertices.Count, color);
            }

            Vector2 x1 = output.PointA;
            Vector2 x2 = output.PointB;

            Color c1 = new Color(1.0f, 0.0f, 0.0f);

            DebugView.DrawPoint(x1, 4.0f, c1);

            Color c2 = new Color(1.0f, 1.0f, 0.0f);

            DebugView.DrawPoint(x2, 4.0f, c2);

            DebugView.EndCustomDraw();
        }
Esempio n. 3
0
        /// <summary>
        /// Test overlap between the two shapes.
        /// </summary>
        /// <param name="shapeA">The first shape.</param>
        /// <param name="indexA">The index for the first shape.</param>
        /// <param name="shapeB">The second shape.</param>
        /// <param name="indexB">The index for the second shape.</param>
        /// <param name="xfA">The transform for the first shape.</param>
        /// <param name="xfB">The transform for the seconds shape.</param>
        /// <returns></returns>
        public static bool TestOverlap(Shape shapeA, int indexA, Shape shapeB, int indexB, ref Transform xfA, ref Transform xfB)
        {
            DistanceInput input = new DistanceInput();

            input.ProxyA     = new DistanceProxy(shapeA, indexA);
            input.ProxyB     = new DistanceProxy(shapeB, indexB);
            input.TransformA = xfA;
            input.TransformB = xfB;
            input.UseRadii   = true;

            SimplexCache   cache;
            DistanceOutput output;

            DistanceGJK.ComputeDistance(ref input, out output, out cache);

            return(output.Distance < 10.0f * Settings.Epsilon);
        }
        /// <summary>
        /// Compute the upper bound on time before two shapes penetrate. Time is represented as
        /// a fraction between [0,tMax]. This uses a swept separating axis and may miss some intermediate,
        /// non-tunneling collision. If you change the time interval, you should call this function
        /// again.
        /// Note: use Distance() to compute the contact point and normal at the time of impact.
        /// </summary>
        /// <param name="input">The input.</param>
        /// <param name="output">The output.</param>
        public static void CalculateTimeOfImpact(ref TOIInput input, out TOIOutput output)
        {
            if (Settings.EnableDiagnostics) //Velcro: We only gather diagnostics when enabled
            {
                ++TOICalls;
            }

            output       = new TOIOutput();
            output.State = TOIOutputState.Unknown;
            output.T     = input.TMax;

            Sweep sweepA = input.SweepA;
            Sweep sweepB = input.SweepB;

            // Large rotations can make the root finder fail, so we normalize the
            // sweep angles.
            sweepA.Normalize();
            sweepB.Normalize();

            GGame.Math.Fix64 tMax = input.TMax;

            GGame.Math.Fix64 totalRadius = input.ProxyA.Radius + input.ProxyB.Radius;
            GGame.Math.Fix64 target      = Math.Max((float)Settings.LinearSlop, (float)(totalRadius - 3.0f * Settings.LinearSlop));
            GGame.Math.Fix64 tolerance   = 0.25f * Settings.LinearSlop;
            Debug.Assert(target > tolerance);

            GGame.Math.Fix64 t1 = 0.0f;
            const int        k_maxIterations = 20;
            int iter = 0;

            // Prepare input for distance query.
            DistanceInput distanceInput = new DistanceInput();

            distanceInput.ProxyA   = input.ProxyA;
            distanceInput.ProxyB   = input.ProxyB;
            distanceInput.UseRadii = false;

            // The outer loop progressively attempts to compute new separating axes.
            // This loop terminates when an axis is repeated (no progress is made).
            for (;;)
            {
                Transform xfA, xfB;
                sweepA.GetTransform(out xfA, t1);
                sweepB.GetTransform(out xfB, t1);

                // Get the distance between shapes. We can also use the results
                // to get a separating axis.
                distanceInput.TransformA = xfA;
                distanceInput.TransformB = xfB;
                DistanceOutput distanceOutput;
                SimplexCache   cache;
                DistanceGJK.ComputeDistance(ref distanceInput, out distanceOutput, out cache);

                // If the shapes are overlapped, we give up on continuous collision.
                if (distanceOutput.Distance <= 0.0f)
                {
                    // Failure!
                    output.State = TOIOutputState.Overlapped;
                    output.T     = 0.0f;
                    break;
                }

                if (distanceOutput.Distance < target + tolerance)
                {
                    // Victory!
                    output.State = TOIOutputState.Touching;
                    output.T     = t1;
                    break;
                }

                SeparationFunction.Initialize(ref cache, input.ProxyA, ref sweepA, input.ProxyB, ref sweepB, t1, out Vector2 axis, out Vector2 localPoint, out SeparationFunctionType type);

                // Compute the TOI on the separating axis. We do this by successively
                // resolving the deepest point. This loop is bounded by the number of vertices.
                bool             done = false;
                GGame.Math.Fix64 t2   = tMax;
                int pushBackIter      = 0;
                for (;;)
                {
                    // Find the deepest point at t2. Store the witness point indices.
                    int indexA, indexB;
                    GGame.Math.Fix64 s2 = SeparationFunction.FindMinSeparation(out indexA, out indexB, t2, input.ProxyA, ref sweepA, input.ProxyB, ref sweepB, ref axis, ref localPoint, type);

                    // Is the final configuration separated?
                    if (s2 > target + tolerance)
                    {
                        // Victory!
                        output.State = TOIOutputState.Seperated;
                        output.T     = tMax;
                        done         = true;
                        break;
                    }

                    // Has the separation reached tolerance?
                    if (s2 > target - tolerance)
                    {
                        // Advance the sweeps
                        t1 = t2;
                        break;
                    }

                    // Compute the initial separation of the witness points.
                    GGame.Math.Fix64 s1 = SeparationFunction.Evaluate(indexA, indexB, t1, input.ProxyA, ref sweepA, input.ProxyB, ref sweepB, ref axis, ref localPoint, type);

                    // Check for initial overlap. This might happen if the root finder
                    // runs out of iterations.
                    if (s1 < target - tolerance)
                    {
                        output.State = TOIOutputState.Failed;
                        output.T     = t1;
                        done         = true;
                        break;
                    }

                    // Check for touching
                    if (s1 <= target + tolerance)
                    {
                        // Victory! t1 should hold the TOI (could be 0.0).
                        output.State = TOIOutputState.Touching;
                        output.T     = t1;
                        done         = true;
                        break;
                    }

                    // Compute 1D root of: f(x) - target = 0
                    int rootIterCount = 0;
                    GGame.Math.Fix64 a1 = t1, a2 = t2;
                    for (;;)
                    {
                        // Use a mix of the secant rule and bisection.
                        GGame.Math.Fix64 t;
                        if ((rootIterCount & 1) != 0)
                        {
                            // Secant rule to improve convergence.
                            t = a1 + (target - s1) * (a2 - a1) / (s2 - s1);
                        }
                        else
                        {
                            // Bisection to guarantee progress.
                            t = 0.5f * (a1 + a2);
                        }

                        ++rootIterCount;

                        if (Settings.EnableDiagnostics) //Velcro: We only gather diagnostics when enabled
                        {
                            ++TOIRootIters;
                        }

                        GGame.Math.Fix64 s = SeparationFunction.Evaluate(indexA, indexB, t, input.ProxyA, ref sweepA, input.ProxyB, ref sweepB, ref axis, ref localPoint, type);

                        if (Fix64.Abs(s - target) < tolerance)
                        {
                            // t2 holds a tentative value for t1
                            t2 = t;
                            break;
                        }

                        // Ensure we continue to bracket the root.
                        if (s > target)
                        {
                            a1 = t;
                            s1 = s;
                        }
                        else
                        {
                            a2 = t;
                            s2 = s;
                        }

                        if (rootIterCount == 50)
                        {
                            break;
                        }
                    }

                    if (Settings.EnableDiagnostics) //Velcro: We only gather diagnostics when enabled
                    {
                        TOIMaxRootIters = Math.Max(TOIMaxRootIters, rootIterCount);
                    }

                    ++pushBackIter;

                    if (pushBackIter == Settings.MaxPolygonVertices)
                    {
                        break;
                    }
                }

                ++iter;

                if (Settings.EnableDiagnostics) //Velcro: We only gather diagnostics when enabled
                {
                    ++TOIIters;
                }

                if (done)
                {
                    break;
                }

                if (iter == k_maxIterations)
                {
                    // Root finder got stuck. Semi-victory.
                    output.State = TOIOutputState.Failed;
                    output.T     = t1;
                    break;
                }
            }

            if (Settings.EnableDiagnostics) //Velcro: We only gather diagnostics when enabled
            {
                TOIMaxIters = Math.Max(TOIMaxIters, iter);
            }
        }
        public override void Update(GameSettings settings, GameTime gameTime)
        {
            base.Update(settings, gameTime);

            ShapeCastInput input = new ShapeCastInput();

            input.ProxyA       = new DistanceProxy(_vAs, _radiusA);
            input.ProxyB       = new DistanceProxy(_vBs, _radiusB);
            input.TransformA   = _transformA;
            input.TransformB   = _transformB;
            input.TranslationB = _translationB;

            ShapeCastOutput output;
            bool            hit = DistanceGJK.ShapeCast(ref input, out output);

            Transform transformB2;

            transformB2.q = _transformB.q;
            transformB2.p = _transformB.p + output.Lambda * input.TranslationB;

            DistanceInput distanceInput = new DistanceInput();

            distanceInput.ProxyA     = new DistanceProxy(_vAs, _radiusA);
            distanceInput.ProxyB     = new DistanceProxy(_vBs, _radiusB);
            distanceInput.TransformA = _transformA;
            distanceInput.TransformB = transformB2;
            distanceInput.UseRadii   = false;
            SimplexCache   simplexCache;
            DistanceOutput distanceOutput;

            DistanceGJK.ComputeDistance(ref distanceInput, out distanceOutput, out simplexCache);

            DrawString($"hit = {(hit ? "true" : "false")}, iters = {output.Iterations}, lambda = {output.Lambda}, distance = {distanceOutput.Distance}");

            Vector2[] vertices = new Vector2[Settings.MaxPolygonVertices];

            for (int i = 0; i < _countA; ++i)
            {
                vertices[i] = MathUtils.Mul(ref _transformA, _vAs[i]);
            }

            DebugView.BeginCustomDraw(ref GameInstance.Projection, ref GameInstance.View);

            if (_countA == 1)
            {
                DebugView.DrawCircle(vertices[0], _radiusA, new Color(0.9f, 0.9f, 0.9f));
            }
            else
            {
                DebugView.DrawPolygon(vertices, _countA, new Color(0.9f, 0.9f, 0.9f));
            }

            for (int i = 0; i < _countB; ++i)
            {
                vertices[i] = MathUtils.Mul(ref _transformB, _vBs[i]);
            }

            if (_countB == 1)
            {
                DebugView.DrawCircle(vertices[0], _radiusB, new Color(0.5f, 0.9f, 0.5f));
            }
            else
            {
                DebugView.DrawPolygon(vertices, _countB, new Color(0.5f, 0.9f, 0.5f));
            }

            for (int i = 0; i < _countB; ++i)
            {
                vertices[i] = MathUtils.Mul(ref transformB2, _vBs[i]);
            }

            if (_countB == 1)
            {
                DebugView.DrawCircle(vertices[0], _radiusB, new Color(0.5f, 0.7f, 0.9f));
            }
            else
            {
                DebugView.DrawPolygon(vertices, _countB, new Color(0.5f, 0.7f, 0.9f));
            }

            if (hit)
            {
                Vector2 p1 = output.Point;
                DebugView.DrawPoint(p1, 10.0f, new Color(0.9f, 0.3f, 0.3f));
                Vector2 p2 = p1 + output.Normal;
                DebugView.DrawSegment(p1, p2, new Color(0.9f, 0.3f, 0.3f));
            }

            DebugView.EndCustomDraw();
        }