Esempio n. 1
0
        public void TestDistance()
        {
            Assert.AreEqual(5, DistanceFunctions.Distance(0, 0, 3, 4));
            Assert.AreEqual(9, DistanceFunctions.Distance(4, 0, 10, 7));
            Assert.AreEqual(15, DistanceFunctions.Distance(10, 20, 20, 32));

            var details = new FurnishingDetails("Test", ' ', "Test", new List <Entities.Trait>());
            var e1      = new Furnishing(details, 0, 0, new Dictionary <string, string>());
            var e2      = new Furnishing(details, 4, 3, new Dictionary <string, string>());

            Assert.AreEqual(5, DistanceFunctions.Distance(e1, e2));

            e1 = new Furnishing(details, 4, 0, new Dictionary <string, string>());
            e2 = new Furnishing(details, 10, 7, new Dictionary <string, string>());
            Assert.AreEqual(9, DistanceFunctions.Distance(e1, e2));

            e1 = new Furnishing(details, 10, 20, new Dictionary <string, string>());
            e2 = new Furnishing(details, 20, 32, new Dictionary <string, string>());
            Assert.AreEqual(15, DistanceFunctions.Distance(e1, e2));

            e1 = new Furnishing(details, 9, 7, new Dictionary <string, string>());
            e2 = new Furnishing(details, 9, 7, new Dictionary <string, string>());
            Assert.AreEqual(0, DistanceFunctions.Distance(e1, e2));
        }
Esempio n. 2
0
        /// <summary>
        /// Check for the next iterator item.
        /// </summary>
        /// <returns>True if we have one, false if not.</returns>
        public bool MoveNext()
        {
            // Bail if we are finished.
            if (iPointsRemaining == 0)
            {
                _Current = default(T);
                return(false);
            }

            // While we still have paths to evaluate.
            while (pPending.Size > 0 && (pEvaluated.Size == 0 || (pPending.MinKey < pEvaluated.MinKey)))
            {
                // If there are pending paths possibly closer than the nearest evaluated point, check it out
                KDNode <T> pCursor = pPending.Min;
                pPending.RemoveMin();

                // Descend the tree, recording paths not taken
                while (!pCursor.IsLeaf)
                {
                    KDNode <T> pNotTaken;

                    // If the seach point is larger, select the right path.
                    if (tSearchPoint[pCursor.iSplitDimension] > pCursor.fSplitValue)
                    {
                        pNotTaken = pCursor.pLeft;
                        pCursor   = pCursor.pRight;
                    }
                    else
                    {
                        pNotTaken = pCursor.pRight;
                        pCursor   = pCursor.pLeft;
                    }

                    // Calculate the shortest distance between the search point and the min and max bounds of the kd-node.
                    double fDistance = kDistanceFunction.DistanceToRectangle(tSearchPoint, pNotTaken.tMinBound, pNotTaken.tMaxBound);

                    // If it is greater than the threshold, skip.
                    if (fThreshold >= 0 && fDistance > fThreshold)
                    {
                        continue;
                    }

                    // Only add the path we need more points or the node is closer than furthest point on list so far.
                    if (pEvaluated.Size < iPointsRemaining || fDistance <= pEvaluated.MaxKey)
                    {
                        pPending.Insert(fDistance, pNotTaken);
                    }
                }

                // If all the points in this KD node are in one place.
                if (pCursor.bSinglePoint)
                {
                    // Work out the distance between this point and the search point.
                    double fDistance = kDistanceFunction.Distance(pCursor.tPoints[0], tSearchPoint);

                    // Skip if the point exceeds the threshold.
                    // Technically this should never happen, but be prescise.
                    if (fThreshold >= 0 && fDistance >= fThreshold)
                    {
                        continue;
                    }

                    // Add the point if either need more points or it's closer than furthest on list so far.
                    if (pEvaluated.Size < iPointsRemaining || fDistance <= pEvaluated.MaxKey)
                    {
                        for (int i = 0; i < pCursor.Size; ++i)
                        {
                            // If we don't need any more, replace max
                            if (pEvaluated.Size == iPointsRemaining)
                            {
                                pEvaluated.ReplaceMax(fDistance, pCursor.tData[i]);
                            }

                            // Otherwise insert.
                            else
                            {
                                pEvaluated.Insert(fDistance, pCursor.tData[i]);
                            }
                        }
                    }
                }

                // If the points in the KD node are spread out.
                else
                {
                    // Treat the distance of each point seperately.
                    for (int i = 0; i < pCursor.Size; ++i)
                    {
                        // Compute the distance between the points.
                        double fDistance = kDistanceFunction.Distance(pCursor.tPoints[i], tSearchPoint);

                        // Skip if it exceeds the threshold.
                        if (fThreshold >= 0 && fDistance >= fThreshold)
                        {
                            continue;
                        }

                        // Insert the point if we have more to take.
                        if (pEvaluated.Size < iPointsRemaining)
                        {
                            pEvaluated.Insert(fDistance, pCursor.tData[i]);
                        }

                        // Otherwise replace the max.
                        else if (fDistance < pEvaluated.MaxKey)
                        {
                            pEvaluated.ReplaceMax(fDistance, pCursor.tData[i]);
                        }
                    }
                }
            }

            // Select the point with the smallest distance.
            if (pEvaluated.Size == 0)
            {
                return(false);
            }

            iPointsRemaining--;
            _CurrentDistance = pEvaluated.MinKey;
            _Current         = pEvaluated.Min;
            pEvaluated.RemoveMin();
            return(true);
        }