Esempio n. 1
0
    //
    // Try to restore the delaunay triangulation by flipping newly created edges
    //

    //This process is similar to when we created the original delaunay triangulation
    //This step can maybe be skipped if you just want a triangulation and Ive noticed its often not flipping any triangles
    private IEnumerator RestoreDelaunayTriangulation(MyVector2 c_p1, MyVector2 c_p2, List <HalfEdge2> newEdges, HalfEdgeData2 triangleData, Normalizer2 normalizer)
    {
        int safety = 0;

        int flippedEdges = 0;

        //Repeat 4.1 - 4.3 until no further swaps take place
        while (true)
        {
            safety += 1;

            if (safety > 100000)
            {
                Debug.Log("Stuck in endless loop when delaunay after fixing constrained edges");

                break;
            }

            bool hasFlippedEdge = false;

            //Step 4.1. Loop over each edge in the list of newly created edges
            for (int j = 0; j < newEdges.Count; j++)
            {
                HalfEdge2 e = newEdges[j];

                //Step 4.2. Let the newly created edge be defined by the vertices
                MyVector2 v_k = e.v.position;
                MyVector2 v_l = e.prevEdge.v.position;

                //If this edge is equal to the constrained edge, then skip to step 4.1
                //because we are not allowed to flip the constrained edge
                if ((v_k.Equals(c_p1) && v_l.Equals(c_p2)) || (v_l.Equals(c_p1) && v_k.Equals(c_p2)))
                {
                    continue;
                }

                //Step 4.3. If the two triangles that share edge v_k and v_l don't satisfy the delaunay criterion,
                //so that a vertex of one of the triangles is inside the circumcircle of the other triangle, flip the edge
                //The third vertex of the triangle belonging to this edge
                MyVector2 v_third_pos = e.nextEdge.v.position;
                //The vertice belonging to the triangle on the opposite side of the edge and this vertex is not a part of the edge
                MyVector2 v_opposite_pos = e.oppositeEdge.nextEdge.v.position;

                //Test if we should flip this edge
                if (DelaunayMethods.ShouldFlipEdge(v_l, v_k, v_third_pos, v_opposite_pos))
                {
                    //Flip the edge
                    hasFlippedEdge = true;

                    HalfEdgeHelpMethods.FlipTriangleEdge(e);

                    flippedEdges += 1;


                    //
                    // PAUSE AND VISUALIZE
                    //

                    visualizeController.DisplayMeshMain(triangleData, normalizer);

                    yield return(new WaitForSeconds(0.5f));
                }
            }

            //We have searched through all edges and havent found an edge to flip, so we cant improve anymore
            if (!hasFlippedEdge)
            {
                //Debug.Log("Found a constrained delaunay triangulation in " + flippedEdges + " flips");

                break;
            }
        }
    }
    //Flip edges until we get a delaunay triangulation
    private IEnumerator FlipEdges(HalfEdgeData2 triangleData)
    {
        //The edges we want to flip
        HashSet <HalfEdge2> edges = triangleData.edges;

        //To avoid getting stuck in infinite loop
        int safety = 0;

        //Count how many edges we have flipped, which may be interesting to display
        int flippedEdges = 0;

        while (true)
        {
            safety += 1;

            if (safety > 100000)
            {
                Debug.Log("Stuck in endless loop when flipping edges to get a Delaunay triangulation");

                break;
            }

            bool hasFlippedEdge = false;

            //Search through all edges to see if we can flip an edge
            foreach (HalfEdge2 thisEdge in edges)
            {
                //Is this edge sharing an edge with another triangle, otherwise its a border, and then we cant flip the edge
                if (thisEdge.oppositeEdge == null)
                {
                    continue;
                }

                //The positions of the vertices belonging to the two triangles that we might flip
                //a-c should be the edge that we might flip
                MyVector2 a = thisEdge.v.position;
                MyVector2 b = thisEdge.nextEdge.v.position;
                MyVector2 c = thisEdge.nextEdge.nextEdge.v.position;
                MyVector2 d = thisEdge.oppositeEdge.nextEdge.v.position;

                //If we want to display the test circle
                //controller.GenerateDelaunayCircleMeshes(a, b, c, d);

                //yield return new WaitForSeconds(controller.pauseTime);

                //Test if we should flip this edge
                if (DelaunayMethods.ShouldFlipEdge(a, b, c, d))
                {
                    flippedEdges += 1;

                    hasFlippedEdge = true;

                    HalfEdgeHelpMethods.FlipTriangleEdge(thisEdge);

                    controller.flipText.text = "Flipped edges: " + flippedEdges;

                    controller.GenerateTriangulationMesh(triangleData);

                    yield return(new WaitForSeconds(controller.pauseTime));
                }
            }

            //We have searched through all edges and havent found an edge to flip, so we have a Delaunay triangulation!
            if (!hasFlippedEdge)
            {
                Debug.Log("Found a delaunay triangulation in " + flippedEdges + " flips");

                break;
            }
        }

        //Remove the circle meshes so we see that we are finished
        controller.ClearBlackMeshes();

        yield return(null);
    }
    IEnumerator InsertPoints(HashSet <MyVector2> points, HalfEdgeData2 triangulationData, Triangle2 superTriangle)
    {
        //VISUALZ
        ShowTriangles(triangulationData);

        //VISUALZ - dont show the colored mesh until its finished because its flickering
        controller.shouldDisplayColoredMesh = false;

        yield return(new WaitForSeconds(controller.pauseTime));


        //Step 4. Loop over each point we want to insert and do Steps 5-7

        //These are for display purposes only
        int missedPoints = 0;
        int flippedEdges = 0;

        foreach (MyVector2 p in points)
        {
            //Step 5. Insert the new point in the triangulation
            //Find the existing triangle the point is in
            HalfEdgeFace2 f = PointTriangulationIntersection.TriangulationWalk(p, null, triangulationData);

            //We couldnt find a triangle maybe because the point is not in the triangulation?
            if (f == null)
            {
                missedPoints += 1;
            }

            //Delete this triangle and form 3 new triangles by connecting p to each of the vertices in the old triangle
            HalfEdgeHelpMethods.SplitTriangleFaceAtPoint(f, p, triangulationData);


            //VISUALZ
            //Display the point as a black circle
            ShowCircle(p);

            yield return(new WaitForSeconds(controller.pauseTime));

            ShowTriangles(triangulationData);

            yield return(new WaitForSeconds(controller.pauseTime));


            //Step 6. Initialize stack. Place all triangles which are adjacent to the edges opposite p on a LIFO stack
            //The report says we should place triangles, but it's easier to place edges with our data structure
            Stack <HalfEdge2> trianglesToInvestigate = new Stack <HalfEdge2>();

            AddTrianglesOppositePToStack(p, trianglesToInvestigate, triangulationData);


            //Step 7. Restore delaunay triangulation
            //While the stack is not empty
            int safety = 0;

            while (trianglesToInvestigate.Count > 0)
            {
                safety += 1;

                if (safety > 1000000)
                {
                    Debug.Log("Stuck in infinite loop when restoring delaunay in incremental sloan algorithm");

                    break;
                }

                //Step 7.1. Remove a triangle from the stack
                HalfEdge2 edgeToTest = trianglesToInvestigate.Pop();

                //Step 7.2. Do we need to flip this edge?
                //If p is outside or on the circumcircle for this triangle, we have a delaunay triangle and can return to next loop
                MyVector2 a = edgeToTest.v.position;
                MyVector2 b = edgeToTest.prevEdge.v.position;
                MyVector2 c = edgeToTest.nextEdge.v.position;

                //abc are here counter-clockwise
                if (DelaunayMethods.ShouldFlipEdgeStable(a, b, c, p))
                {
                    HalfEdgeHelpMethods.FlipTriangleEdge(edgeToTest);

                    //Step 7.3. Place any triangles which are now opposite p on the stack
                    AddTrianglesOppositePToStack(p, trianglesToInvestigate, triangulationData);

                    flippedEdges += 1;

                    //VISUALZ
                    controller.flipText.text = "Flipped edges: " + flippedEdges;

                    ShowTriangles(triangulationData);

                    yield return(new WaitForSeconds(controller.pauseTime));
                }
            }
        }


        //Dont show the last point we added
        controller.ResetBlackMeshes();


        //Step 8. Delete the vertices belonging to the supertriangle
        StartCoroutine(RemoveSuperTriangle(superTriangle, triangulationData));

        yield return(null);
    }