public CudaDeviceVariable <float> CalculateAccuracy(CudaDeviceVariable <byte> population) { Profiler.Start("clear accuracy memory"); context.ClearMemory(deviceAccuracy.DevicePointer, 0, deviceAccuracy.SizeInBytes); Profiler.Stop("clear accuracy memory"); Profiler.Start("accuracy Kernel"); accuracyKernel.Run( test.classes.DevicePointer, teaching.classes.DevicePointer, population.DevicePointer, calculatedNeabours.DevicePointer, deviceAccuracy.DevicePointer ); Profiler.Stop("accuracy Kernel"); return(deviceAccuracy); }
static void Main(string[] args) { const int nx = 2048; const int ny = 2048; // shifts applied to x and y data const int x_shift = 5; const int y_shift = 7; ShrQATest.shrQAStart(args); if ((nx % TILE_DIM != 0) || (ny % TILE_DIM != 0)) { Console.Write("nx and ny must be multiples of TILE_DIM\n"); ShrQATest.shrQAFinishExit(args, ShrQATest.eQAstatus.QA_WAIVED); } // execution configuration parameters dim3 grid = new dim3(nx / TILE_DIM, ny / TILE_DIM, 1); dim3 threads = new dim3(TILE_DIM, TILE_DIM, 1); // This will pick the best possible CUDA capable device int devID = findCudaDevice(args); //Load Kernel image from resources string resName; if (IntPtr.Size == 8) { resName = "simplePitchLinearTexture_x64.ptx"; } else { resName = "simplePitchLinearTexture.ptx"; } string resNamespace = "simplePitchLinearTexture"; string resource = resNamespace + "." + resName; Stream stream = Assembly.GetExecutingAssembly().GetManifestResourceStream(resource); if (stream == null) { throw new ArgumentException("Kernel not found in resources."); } byte[] kernels = new byte[stream.Length]; int bytesToRead = (int)stream.Length; while (bytesToRead > 0) { bytesToRead -= stream.Read(kernels, (int)stream.Position, bytesToRead); } CudaKernel PLKernel = ctx.LoadKernelPTX(kernels, "shiftPitchLinear"); CudaKernel ArrayKernel = ctx.LoadKernelPTX(kernels, "shiftArray"); CudaStopWatch stopwatch = new CudaStopWatch(); // ---------------------------------- // Host allocation and initialization // ---------------------------------- float[] h_idata = new float[nx * ny]; float[] h_odata = new float[nx * ny]; float[] gold = new float[nx * ny]; for (int i = 0; i < nx * ny; ++i) { h_idata[i] = (float)i; } // ------------------------ // Device memory allocation // ------------------------ // Pitch linear input data CudaPitchedDeviceVariable <float> d_idataPL = new CudaPitchedDeviceVariable <float>(nx, ny); // Array input data CudaArray2D d_idataArray = new CudaArray2D(CUArrayFormat.Float, nx, ny, CudaArray2DNumChannels.One); // Pitch linear output data CudaPitchedDeviceVariable <float> d_odata = new CudaPitchedDeviceVariable <float>(nx, ny); // ------------------------ // copy host data to device // ------------------------ // Pitch linear d_idataPL.CopyToDevice(h_idata); // Array d_idataArray.CopyFromHostToThis <float>(h_idata); // ---------------------- // Bind texture to memory // ---------------------- // Pitch linear CudaTextureLinearPitched2D <float> texRefPL = new CudaTextureLinearPitched2D <float>(PLKernel, "texRefPL", CUAddressMode.Wrap, CUFilterMode.Point, CUTexRefSetFlags.NormalizedCoordinates, CUArrayFormat.Float, d_idataPL); CudaTextureArray2D texRefArray = new CudaTextureArray2D(ArrayKernel, "texRefArray", CUAddressMode.Wrap, CUFilterMode.Point, CUTexRefSetFlags.NormalizedCoordinates, d_idataArray); // --------------------- // reference calculation // --------------------- for (int j = 0; j < ny; j++) { int jshift = (j + y_shift) % ny; for (int i = 0; i < nx; i++) { int ishift = (i + x_shift) % nx; gold[j * nx + i] = h_idata[jshift * nx + ishift]; } } // ---------------- // shiftPitchLinear // ---------------- ctx.ClearMemory(d_odata.DevicePointer, 0, d_odata.TotalSizeInBytes); PLKernel.BlockDimensions = threads; PLKernel.GridDimensions = grid; stopwatch.Start(); for (int i = 0; i < NUM_REPS; i++) { PLKernel.Run(d_odata.DevicePointer, (int)(d_odata.Pitch / sizeof(float)), nx, ny, x_shift, y_shift); } stopwatch.Stop(); stopwatch.StopEvent.Synchronize(); float timePL = stopwatch.GetElapsedTime(); // check results d_odata.CopyToHost(h_odata); bool res = cutComparef(gold, h_odata); bool success = true; if (res == false) { Console.Write("*** shiftPitchLinear failed ***\n"); success = false; } // ---------- // shiftArray // ---------- ctx.ClearMemory(d_odata.DevicePointer, 0, d_odata.TotalSizeInBytes); ArrayKernel.BlockDimensions = threads; ArrayKernel.GridDimensions = grid; stopwatch.Start(); for (int i = 0; i < NUM_REPS; i++) { ArrayKernel.Run(d_odata.DevicePointer, (int)(d_odata.Pitch / sizeof(float)), nx, ny, x_shift, y_shift); } stopwatch.Stop(); stopwatch.StopEvent.Synchronize(); float timeArray = stopwatch.GetElapsedTime(); // check results d_odata.CopyToHost(h_odata); res = cutComparef(gold, h_odata); if (res == false) { Console.Write("*** shiftArray failed ***\n"); success = false; } float bandwidthPL = 2.0f * 1000.0f * nx * ny * sizeof(float) / (1e+9f) / (timePL / NUM_REPS); float bandwidthArray = 2.0f * 1000.0f * nx * ny * sizeof(float) / (1e+9f) / (timeArray / NUM_REPS); Console.Write("\nBandwidth (GB/s) for pitch linear: {0}; for array: {1}\n", bandwidthPL, bandwidthArray); float fetchRatePL = nx * ny / 1e+6f / (timePL / (1000.0f * NUM_REPS)); float fetchRateArray = nx * ny / 1e+6f / (timeArray / (1000.0f * NUM_REPS)); Console.Write("\nTexture fetch rate (Mpix/s) for pitch linear: {0}; for array: {1}\n\n", fetchRatePL, fetchRateArray); // cleanup texRefPL.Dispose(); texRefArray.Dispose(); d_idataPL.Dispose(); d_idataArray.Dispose(); d_odata.Dispose(); stopwatch.Dispose(); ctx.Dispose(); ShrQATest.shrQAFinishExit(args, (success == true) ? ShrQATest.eQAstatus.QA_PASSED : ShrQATest.eQAstatus.QA_FAILED); }
public void Clear() { _context.ClearMemory(_ptr.DevicePointer, 0, _ptr.SizeInBytes); }
public void Clear() { _context.ClearMemory(DeviceVariable.DevicePointer, 0, DeviceVariable.SizeInBytes); }