Esempio n. 1
0
        public void EclipticalToRectangular()
        {
            CrdsEcliptical ecl = new CrdsEcliptical(199.907347, 0.62 / 3600.0, 0.99760775);

            CrdsRectangular rect = ecl.ToRectangular(23.4402297);

            Assert.AreEqual(-0.9379952, rect.X, 1e-7);
            Assert.AreEqual(-0.3116544, rect.Y, 1e-7);
            Assert.AreEqual(-0.1351215, rect.Z, 1e-7);
        }
        private CrdsRectangular SunRectangular(double jd, double epsilon)
        {
            CrdsHeliocentrical hEarth = PlanetPositions.GetPlanetCoordinates(3, jd, true, false);

            var eSun = new CrdsEcliptical(Angle.To360(hEarth.L + 180), -hEarth.B, hEarth.R);

            // Corrected solar coordinates to FK5 system
            // NO correction for nutation and aberration should be performed here (ch. 26, p. 171)
            eSun += PlanetPositions.CorrectionForFK5(jd, eSun);

            return(eSun.ToRectangular(epsilon));
        }
Esempio n. 3
0
        /// <summary>
        /// Calculates Sun rectangular coordinates for J2000 epoch
        /// </summary>
        private CrdsRectangular Sun_RectangularJ2000(SkyContext c)
        {
            // Heliocentrical coordinates of Earth
            CrdsHeliocentrical hEarth = c.Get(Earth_HeliocentricalJ2000);

            // transform to ecliptical coordinates of the Sun
            CrdsEcliptical eclSun = new CrdsEcliptical(Angle.To360(hEarth.L + 180), -hEarth.B, hEarth.R);

            // Sun rectangular coordinates, J2000.0 epoch
            CrdsRectangular rSun = eclSun.ToRectangular(epsilonJ2000);

            return(rSun);
        }
Esempio n. 4
0
        public void Position()
        {
            // Mean obliquity of the ecliptic for J2000.0 epoch
            const double epsilonJ2000 = 23.4392912510;

            double jd   = 2448908.5;
            double tau  = 0;
            double tau0 = 1;

            int iteration = 1;

            // final difference to stop iteration process, 1 second of time
            double deltaTau = TimeSpan.FromSeconds(1).TotalDays;

            CrdsHeliocentrical posPluto = null;
            CrdsHeliocentrical hEarth   = null;

            while (Math.Abs(tau - tau0) > deltaTau)
            {
                posPluto = PlutoPosition.Position(jd - tau);

                if (iteration == 1)
                {
                    Assert.AreEqual(232.74071, posPluto.L, 1e-5);
                    Assert.AreEqual(14.58782, posPluto.B, 1e-5);
                    Assert.AreEqual(29.711111, posPluto.R, 1e-6);
                }
                else if (iteration == 2)
                {
                    Assert.AreEqual(232.73949, posPluto.L, 1e-5);
                    Assert.AreEqual(14.58801, posPluto.B, 1e-5);
                    Assert.AreEqual(29.711094, posPluto.R, 1e-6);
                }

                // get Earth coordinates
                hEarth = PlanetPositions.GetPlanetCoordinates(3, jd, highPrecision: false, epochOfDate: false);

                // transform to ecliptical coordinates of the Sun
                CrdsEcliptical eclSun = new CrdsEcliptical(Angle.To360(hEarth.L + 180), -hEarth.B, hEarth.R);

                CrdsRectangular rSun = eclSun.ToRectangular(epsilonJ2000);

                if (iteration == 1)
                {
                    Assert.AreEqual(-0.9373959, rSun.X, 1e-6);
                    Assert.AreEqual(-0.3131679, rSun.Y, 1e-6);
                    Assert.AreEqual(-0.1357792, rSun.Z, 1e-6);
                }

                var rPluto = new CrdsEcliptical(posPluto.L, posPluto.B, posPluto.R).ToRectangular(epsilonJ2000);

                if (iteration == 1)
                {
                    Assert.AreEqual(-17.4079141, rPluto.X, 1e-5);
                    Assert.AreEqual(-23.9730804, rPluto.Y, 1e-5);
                    Assert.AreEqual(-2.2374228, rPluto.Z, 1e-5);
                }
                else if (iteration == 2)
                {
                    Assert.AreEqual(-17.4083780, rPluto.X, 1e-5);
                    Assert.AreEqual(-23.9727452, rPluto.Y, 1e-5);
                    Assert.AreEqual(-2.2371797, rPluto.Z, 1e-5);
                }

                double x    = rPluto.X + rSun.X;
                double y    = rPluto.Y + rSun.Y;
                double z    = rPluto.Z + rSun.Z;
                double dist = Math.Sqrt(x * x + y * y + z * z);

                if (iteration == 1)
                {
                    Assert.AreEqual(30.528746, dist, 1e-5);
                }
                else if (iteration == 2)
                {
                    Assert.AreEqual(30.528739, dist, 1e-5);
                }

                tau0 = tau;
                tau  = PlanetPositions.LightTimeEffect(dist);

                if (iteration == 1 || iteration == 2)
                {
                    Assert.AreEqual(0.17632, tau, 1e-5);
                }

                iteration++;
            }

            // should be only 2 iterations
            Assert.AreEqual(2, iteration - 1);

            // ecliptical coordinates of Pluto, J2000.0 epoch
            var eclPluto = posPluto.ToRectangular(hEarth).ToEcliptical();

            // geocentric astrometric equatorial coordinates of Pluto, J2000.0 epoch
            var eqPluto2000 = eclPluto.ToEquatorial(epsilonJ2000);

            // check coordinates with possible error with 1 arcsecond
            Assert.AreEqual(new HMS("15h 31m 43.8s").ToDecimalAngle(), eqPluto2000.Alpha, 1 / 3600.0);
            Assert.AreEqual(new DMS("-4* 27' 29''").ToDecimalAngle(), eqPluto2000.Delta, 1 / 3600.0);
        }