Esempio n. 1
0
        protected override async Task OnMessageActivityAsync(ITurnContext <IMessageActivity> turnContext, CancellationToken cancellationToken)
        {
            // Add input data
            var input = new ModelInput()
            {
                SentimentText = turnContext.Activity.Text
            };

            // Load model and predict output of sample data
            ModelOutput result = ConsumeModel.Predict(input);

            var replyText = result.Prediction ? "Toxic" : "Non-Toxic";

            await turnContext.SendActivityAsync(MessageFactory.Text(replyText, replyText), cancellationToken);
        }
Esempio n. 2
0
        static void Main(string[] args)
        {
            Console.WriteLine("Sentiment Prediction");
            Console.WriteLine("Insert your text to evaluate...");
            // Add input data
            var input = new ModelInput();

            input.SentimentText = Console.ReadLine();

            // Load model and predict output of sample data
            ModelOutput result = ConsumeModel.Predict(input);

            Console.WriteLine("The result was a " + (!result.Prediction ? "Good" : "Bad") + " Sentiment");
            Console.ReadLine();
        }
Esempio n. 3
0
        static void Main(string[] args)
        {
            // Add input data
            var input = new ModelInput()
            {
                Col0 = "This restaurant was wonderful."
            };

            // Load model and predict output of sample data
            ModelOutput result = ConsumeModel.Predict(input);
            // If Prediction is 1, sentiment is "Positive"; otherwise, sentiment is "Negative"
            string sentiment = result.Prediction == "1" ? "Positive" : "Negative";

            Console.WriteLine($"Text: {input.Col0}\nSentiment: {sentiment}");
        }
Esempio n. 4
0
        static void Main(string[] args)
        {
            // Create single instance of sample data from first line of dataset for model input
            ModelInput sampleData = CreateSingleDataSample(DATA_FILEPATH);

            // Make a single prediction on the sample data and print results
            ModelOutput predictionResult = ConsumeModel.Predict(sampleData);

            Console.WriteLine("Using model to make single prediction -- Comparing actual IsPositive with predicted IsPositive from sample data...\n\n");
            Console.WriteLine($"word: {sampleData.Word}");
            Console.WriteLine($"isNegative: {sampleData.IsNegative}");
            Console.WriteLine($"\n\nActual IsPositive: {sampleData.IsPositive} \nPredicted IsPositive: {predictionResult.Prediction}\n\n");
            Console.WriteLine("=============== End of process, hit any key to finish ===============");
            Console.ReadKey();
        }
Esempio n. 5
0
        static void Main(string[] args)
        {
            Debug.WriteLine(" Object is not valid for this category.");
            // Add input data
            var input = new ModelInput();

            input.ImageSource = @"C:\Users\racha\Downloads\Machine Learning\images\Auto\Auto1.jpg";


            // Load model and predict output of sample data
            ModelOutput result = ConsumeModel.Predict(input);

            Debug.WriteLine(result.Prediction);
            Console.WriteLine(result.Prediction);
        }
Esempio n. 6
0
        static void Main(string[] args)
        {
            string text;

            do
            {
                var input = new ModelInput();
                text = Console.ReadLine();
                input.SentimentText = text;

                // Load model and predict output of sample data
                ModelOutput result = ConsumeModel.Predict(input);
                Console.WriteLine($"Text: {input.SentimentText}\nIs Toxic: {result.Prediction}");
            }while (text != "q");
        }
Esempio n. 7
0
        static void Main(string[] args)
        {
            // Create single instance of sample data from first line of dataset for model input
            ModelInput sampleData = CreateSingleDataSample(DATA_FILEPATH);

            // Make a single prediction on the sample data and print results
            ModelOutput predictionResult = ConsumeModel.Predict(sampleData);

            Console.WriteLine("Using model to make single prediction -- Comparing actual Open with predicted Open from sample data...\n\n");
            Console.WriteLine($"timestamp: {sampleData.Timestamp}");
            Console.WriteLine($"polarity: {sampleData.Polarity}");
            Console.WriteLine($"\n\nActual Open: {sampleData.Open} \nPredicted Open: {predictionResult.Score}\n\n");
            Console.WriteLine("=============== End of process, hit any key to finish ===============");
            Console.ReadKey();
        }
        public async Task <IActionResult> Create(string postId, string parentId, string content)
        {
            var mi = new ModelInput();

            mi.SentimentText = content;

            var  a      = ConsumeModel.Predict(mi);
            bool isRude = a.Prediction == "1";

            var posterId = this.userManager.GetUserId(this.User);

            await this.commentsService.CreateComment(posterId, parentId, postId, content, isRude);

            return(this.RedirectToAction("ById", "JobPosts", new { id = postId }));
        }
        public override void FillSentiment()
        {
            int         totalSentiment = 0;
            ModelOutput result;
            var         input = new ModelInput();

            foreach (string line in _article.Text)
            {
                input.Comment   = line;
                result          = ConsumeModel.Predict(input);
                totalSentiment += result.Prediction ? 1 : 0;
            }

            _article.Sentiment = totalSentiment / _article.Text.Count;
        }
Esempio n. 10
0
        static void Main(string[] args)
        {
            // Add input data
            var input = new ModelInput();

            Console.Write("Enter Distance: ");
            input.Trip_distance = Convert.ToInt32(Console.ReadLine());
            Console.Write("Enter Time: ");
            input.Trip_time_in_secs = Convert.ToInt32(Console.ReadLine());

            // Load model and predict output of sample data
            ModelOutput result = ConsumeModel.Predict(input);

            Console.WriteLine("The estimated fare is: " + result.Score);
        }
Esempio n. 11
0
        static void Main(string[] args)
        {
            // Add input data
            var input = new ModelInput();

            input.Comment = "This is heaven";

            // Load model and predict output of sample data
            string path = @"../SampleClassification/SampleClassification.Model/MLModel.zip";

            ConsumeModel.MLNetModelPath = Path.GetFullPath(path);
            ModelOutput result = ConsumeModel.Predict(input);

            Console.WriteLine($"Text: {input.Comment}\nIs Toxic: {result.Prediction}");
        }
Esempio n. 12
0
        public void Comment(string commnet)
        {
            // Add input data
            var input = new ModelInput()
            {
                Col0 = commnet
            };

            // Load model and predict output of sample data
            ModelOutput result = ConsumeModel.Predict(input);
            // If Prediction is 1, sentiment is "Positive"; otherwise, sentiment is "Negative"
            string sentiment = result.Prediction == "1" ? "Positive" : "Negative";

            Console.WriteLine($"Thank you For Your {sentiment} Comment");
        }
Esempio n. 13
0
        static void Main(string[] args)
        {
            // Create single instance of sample data from first line of dataset for model input
            ModelInput sampleData = CreateSingleDataSample(DATA_FILEPATH);

            // Make a single prediction on the sample data and print results
            ModelOutput predictionResult = ConsumeModel.Predict(sampleData);

            Console.WriteLine("Using model to make single prediction -- Comparing actual Product_category with predicted Product_category from sample data...\n\n");
            Console.WriteLine($"birth_year: {sampleData.Birth_year}");
            Console.WriteLine($"user_gender: {sampleData.User_gender}");
            Console.WriteLine($"\n\nActual Product_category: {sampleData.Product_category} \nPredicted Product_category value {predictionResult.Prediction} \nPredicted Product_category scores: [{String.Join(",", predictionResult.Score)}]\n\n");
            Console.WriteLine("=============== End of process, hit any key to finish ===============");
            Console.ReadKey();
        }
Esempio n. 14
0
        static void Main(string[] args)
        {
            //This line is for creating model
            //ModelBuilder.CreateModel();
            ModelInput input = new ModelInput()
            {
                Date          = DateTime.Now,
                WeightedPrice = 18245.52f
            };
            var result = ConsumeModel.Predict(input, horizon: 3);

            Console.WriteLine($"Predicted Bitcoin actual price for is {result.ForecastedPrice[0]:#$}");
            Console.WriteLine($"Predicted Bitcoin lowerbound price for is {result.LowerBoundPrice[0]:#$}");
            Console.WriteLine($"Predicted Bitcoin upperbound price for is {result.UpperBoundPrice[0]:#$}");
        }
Esempio n. 15
0
        static void Main(string[] args)
        {
            // Create single instance of sample data from first line of dataset for model input
            ModelInput sampleData = CreateSingleDataSample(DATA_FILEPATH);

            // Make a single prediction on the sample data and print results
            ModelOutput predictionResult = ConsumeModel.Predict(sampleData);

            Console.WriteLine("Using model to make single prediction -- Comparing actual DirectionChanged_ with predicted DirectionChanged_ from sample data...\n\n");
            Console.WriteLine($"previousHit: {sampleData.PreviousHit}");
            Console.WriteLine($"newHit: {sampleData.NewHit}");
            Console.WriteLine($"\n\nActual DirectionChanged_: {sampleData.DirectionChanged_} \nPredicted DirectionChanged_: {predictionResult.Prediction}\n\n");
            Console.WriteLine("=============== End of process, hit any key to finish ===============");
            Console.ReadKey();
        }
Esempio n. 16
0
        public async Task <IActionResult> AjaxComment(int ProjectId, string theComment)
        {
            //Find User Id
            var _userId           = _userManager.GetUserId(User);
            var ProjectValidation = await _context.Projectdb.FindAsync(ProjectId);

            var UserValidation = await _context.appUserdb.FindAsync(_userId);

            //if user or project dosent exist at the database
            if (UserValidation == null || ProjectValidation == null)
            {
                return(NotFound());
            }
            Comment comment = new Comment
            {
                project    = await _context.Projectdb.FindAsync(ProjectId),
                owner      = await _context.appUserdb.FindAsync(_userId),
                OwnerId    = _userId,
                theComment = theComment,
                dateSubmit = DateTime.Now
            };
            var input = new ModelInput();

            input.Comment = theComment;
            ModelOutput result = ConsumeModel.Predict(input);

            if (result.Prediction)
            {
                comment.RudeComment = true;
            }
            else
            {
                comment.RudeComment = false;
            }
            //If The Comments State Is Not Vaild.
            if (!ModelState.IsValid)
            {
                return(View(comment));
            }
            Project project = comment.project;

            project.comments.Add(comment);
            _context.Add(comment);
            //_context.Add(project);
            await _context.SaveChangesAsync();

            return(Json("OK!"));
        }
Esempio n. 17
0
        static void Main(string[] args)
        {
            // Add input data
            var input = new ModelInput();

            while (true)
            {
                Console.Write("Enter line # in data file (ENTER to quit): ");
                int lineNumber;
                var success = int.TryParse(Console.ReadLine(), out lineNumber);
                if (!success)
                {
                    break;
                }

                var    dataPath = @"C:\GitHub\Misc-csharp\MLPricePrediction\taxi-fare-train.txt";
                string line     = "";
                using (var f = new StreamReader(dataPath))
                {
                    for (int i = 0; i < lineNumber; ++i)
                    {
                        line = f.ReadLine();
                    }
                }

                var items = line.Split(',');

                input.Vendor_id         = items[0];
                input.Rate_code         = int.Parse(items[1]);
                input.Passenger_count   = int.Parse(items[2]);
                input.Trip_time_in_secs = int.Parse(items[3]);
                input.Trip_distance     = float.Parse(items[4]);
                input.Payment_type      = items[5];

                /*input.Vendor_id = "CMT";        // CMT, VTS
                *  input.Rate_code = 1;
                *  input.Passenger_count = 1;
                *  input.Trip_time_in_secs = 386;
                *  input.Trip_distance = 1.3f;
                *  input.Payment_type = "CRD";     // CSH, CRD*/


                // Load model and predict output of sample data
                ModelOutput result = ConsumeModel.Predict(input);
                Console.WriteLine($"Vendor:{input.Vendor_id} RateCode:{input.Rate_code} Passengers:{input.Passenger_count} TripTime:{input.Trip_time_in_secs} Distance:{input.Trip_distance} PaymentType:{input.Payment_type}");
                Console.WriteLine($"Fare: {result.Score:N2}\n");
            }
        }
Esempio n. 18
0
        static void Main(string[] args)
        {
            // Create single instance of sample data from first line of dataset for model input
            ModelInput sampleData = CreateSingleDataSample(DATA_FILEPATH);

            // Make a single prediction on the sample data and print results
            var predictionResult = ConsumeModel.Predict(sampleData);

            Console.WriteLine("Using model to make single prediction -- Comparing actual PARSEME_MWE with predicted PARSEME_MWE from sample data...\n\n");
            Console.WriteLine($"FORMm3: {sampleData.FORMm3}");
            Console.WriteLine($"LEMMAm3: {sampleData.LEMMAm3}");
            Console.WriteLine($"UPOSm3: {sampleData.UPOSm3}");
            Console.WriteLine($"HEADm3: {sampleData.HEADm3}");
            Console.WriteLine($"DEPRELm3: {sampleData.DEPRELm3}");
            Console.WriteLine($"FORMm2: {sampleData.FORMm2}");
            Console.WriteLine($"LEMMAm2: {sampleData.LEMMAm2}");
            Console.WriteLine($"UPOSm2: {sampleData.UPOSm2}");
            Console.WriteLine($"HEADm2: {sampleData.HEADm2}");
            Console.WriteLine($"DEPRELm2: {sampleData.DEPRELm2}");
            Console.WriteLine($"FORMm1: {sampleData.FORMm1}");
            Console.WriteLine($"LEMMAm1: {sampleData.LEMMAm1}");
            Console.WriteLine($"UPOSm1: {sampleData.UPOSm1}");
            Console.WriteLine($"HEADm1: {sampleData.HEADm1}");
            Console.WriteLine($"DEPRELm1: {sampleData.DEPRELm1}");
            Console.WriteLine($"FORM0: {sampleData.FORM0}");
            Console.WriteLine($"LEMMA0: {sampleData.LEMMA0}");
            Console.WriteLine($"UPOS0: {sampleData.UPOS0}");
            Console.WriteLine($"HEAD0: {sampleData.HEAD0}");
            Console.WriteLine($"DEPREL0: {sampleData.DEPREL0}");
            Console.WriteLine($"FORMp1: {sampleData.FORMp1}");
            Console.WriteLine($"LEMMAp1: {sampleData.LEMMAp1}");
            Console.WriteLine($"UPOSp1: {sampleData.UPOSp1}");
            Console.WriteLine($"HEADp1: {sampleData.HEADp1}");
            Console.WriteLine($"DEPRELp1: {sampleData.DEPRELp1}");
            Console.WriteLine($"FORMp2: {sampleData.FORMp2}");
            Console.WriteLine($"LEMMAp2: {sampleData.LEMMAp2}");
            Console.WriteLine($"UPOSp2: {sampleData.UPOSp2}");
            Console.WriteLine($"HEADp2: {sampleData.HEADp2}");
            Console.WriteLine($"DEPRELp2: {sampleData.DEPRELp2}");
            Console.WriteLine($"FORMp3: {sampleData.FORMp3}");
            Console.WriteLine($"LEMMAp3: {sampleData.LEMMAp3}");
            Console.WriteLine($"UPOSp3: {sampleData.UPOSp3}");
            Console.WriteLine($"HEADp3: {sampleData.HEADp3}");
            Console.WriteLine($"DEPRELp3: {sampleData.DEPRELp3}");
            Console.WriteLine($"\n\nActual PARSEME_MWE: {sampleData.PARSEME_MWE} \nPredicted PARSEME_MWE value {predictionResult.Prediction} \nPredicted PARSEME_MWE scores: [{String.Join(",", predictionResult.Score)}]\n\n");
            Console.WriteLine("=============== End of process, hit any key to finish ===============");
            Console.ReadKey();
        }
            public async Task <SendCommentDTO> Handle(Command request, CancellationToken cancellationToken)
            {
                var sender = await dataContext.Users.FirstOrDefaultAsync(x => x.Id == currentUser.UserId);

                if (sender is null)
                {
                    throw new HttpContextException(HttpStatusCode.NotFound, new { User = "******" });
                }

                var advertise = await dataContext.Advertise.Where(x => x.UniqueId == request.AdvertiseId)
                                .FirstOrDefaultAsync();

                ModelInput sampleData = new ModelInput()
                {
                    Comment = request.Comment,
                };

                // Make a single prediction on the sample data and print results
                var predictionResult = ConsumeModel.Predict(sampleData);


                var userComment = new UserComments
                {
                    Advertise        = advertise,
                    Commenter        = sender,
                    CommentedAt      = DateTime.UtcNow,
                    Comment          = request.Comment,
                    PositiveAccuracy = predictionResult.Score[0],
                    NegativeAccuracy = predictionResult.Score[1]
                };
                await dataContext.UserComments.AddAsync(userComment);

                var success = await dataContext.SaveChangesAsync() > 0;

                if (success)
                {
                    return(new SendCommentDTO
                    {
                        Comment = userComment.Comment,
                        CommentedAt = userComment.CommentedAt,
                        DisplayName = $"{userComment.Commenter.FirstName} {userComment.Commenter.LastName}"
                    });
                }
                else
                {
                    throw new Exception("ERROR WHILE SENDING Comment");
                }
            }
Esempio n. 20
0
        static void Main(string[] args)
        {
            // Modelimizi eğittik. Artık ona örnek yorumlar yollayıp bunun zararlı olup olmadığını tahmin etmesini isteyebiliriz.
            var input = new ModelInput();

            input.SentimentText = "It was a very disgusting article, man.";

            // Tahminlemeyi yaptırıyoruz
            ModelOutput result = ConsumeModel.Predict(input);

            Console.WriteLine($"Girilen Yorum: '{input.SentimentText}'\nZehirli mi?: {result.Prediction}");

            input.SentimentText = "Great narration. I took great advantage. Thank you.";
            result = ConsumeModel.Predict(input);
            Console.WriteLine($"Girilen Yorum: '{input.SentimentText}'\nZehirli mi?: {result.Prediction}");
        }
Esempio n. 21
0
        static void Main(string[] args)
        {
            // Create single instance of sample data from first line of dataset for model input
            ModelInput sampleData = CreateSingleDataSample(DATA_FILEPATH);

            // Make a single prediction on the sample data and print results
            ModelOutput predictionResult = ConsumeModel.Predict(sampleData);

            Console.WriteLine("Using model to make single prediction -- Comparing actual Area with predicted Area from sample data...\n\n");
            Console.WriteLine($"ID: {sampleData.ID}");
            Console.WriteLine($"Title: {sampleData.Title}");
            Console.WriteLine($"Description: {sampleData.Description}");
            Console.WriteLine($"\n\nActual Area: {sampleData.Area} \nPredicted Area value {predictionResult.Prediction} \nPredicted Area scores: [{String.Join(",", predictionResult.Score)}]\n\n");
            Console.WriteLine("=============== End of process, hit any key to finish ===============");
            Console.ReadKey();
        }
Esempio n. 22
0
        static void Main(string[] args)
        {
            // Add input data
            var input = new ModelInput();

            input.Passenger_count   = 1f;
            input.Payment_type      = "CRD";
            input.Trip_distance     = 5.3f;
            input.Trip_time_in_secs = 850;
            input.Vendor_id         = "CMT";

            // Load model and predict output of sample data
            ModelOutput result = ConsumeModel.Predict(input);

            Console.WriteLine($"The predicted fare is: {result.Score}");
        }
Esempio n. 23
0
        protected override async Task OnMessageActivityAsync(ITurnContext <IMessageActivity> turnContext, CancellationToken cancellationToken)
        {
            // Create single instance of sample data from first line of dataset for model input
            ModelInput sampleData = new ModelInput()
            {
                Sentiment_Text = turnContext.Activity.Text,
            };

            // Make a single prediction on the sample data and print results
            var predictionResult = ConsumeModel.Predict(sampleData);

            var replyText = $"Echo: {turnContext.Activity.Text}";
            await turnContext.SendActivityAsync(MessageFactory.Text(replyText, replyText), cancellationToken);

            await turnContext.SendActivityAsync($"You are {predictionResult.Prediction}", null, null, cancellationToken);
        }
        static void Main(string[] args)
        {
            Console.WriteLine("Leave a Comment,Please :");

            string Coment;

            Coment = Console.ReadLine();//Get a comment from the user.
            var input = new ModelInput();

            input.SentimentText = Coment;//Give the comment left as input

            // Load model and predict output from the comment left
            ModelOutput result = ConsumeModel.Predict(input);

            Console.WriteLine($"Text: {input.SentimentText}\nIs Toxic: {result.Prediction}\n");
        }
Esempio n. 25
0
        static void Main(string[] args)
        {
            List <ModelInput> sampleData = CreateSingleDataSample(DATA_FILEPATH);

            foreach (var data in sampleData)
            {
                var predictionResult = ConsumeModel.Predict(data);

                Console.WriteLine("================================================================================================");
                Console.WriteLine($"Title: {data.Title}");
                //Console.WriteLine($"Author: {data.Author}");
                //Console.WriteLine($"Description: {data.Description}");
                //Console.WriteLine($"NumberOfViews: {data.NumberOfViews}");
                Console.WriteLine($"Actual Like: {data.Like} \nPredicted Like: {predictionResult.Prediction}");
            }
        }
Esempio n. 26
0
        static void Main(string[] args)
        {
            // Add input data
            var input = new ModelInput
            {
                Passenger_count   = 2,
                Trip_distance     = 4,
                Trip_time_in_secs = 1150,
                Payment_type      = "CRD"
            };

            // Load model and predict output of sample data
            ModelOutput result = ConsumeModel.Predict(input);

            Console.WriteLine($"Predicted fare: ${result.Score}");
        }
Esempio n. 27
0
        static void Main(string[] args)
        {
            Console.WriteLine("AI Prediction of age of vin numbers");
            Console.WriteLine("Training data: 10,000 rows spanish data");
            // Add input data
            var input = new ModelInput();

            Console.WriteLine("Please enter a VIN:");
            input.VIN = Console.ReadLine();

            // Load model and predict output of sample data
            ModelOutput result = ConsumeModel.Predict(input);

            Console.WriteLine("The year is predicted to be: " + result.Prediction);
            Console.ReadLine();
        }
Esempio n. 28
0
        static void Main(string[] args)
        {
            // Create single instance of sample data from first line of dataset for model input
            ModelInput sampleData = new ModelInput()
            {
                Col1  = 13868.85F,
                Col2  = 11063.38F,
                Col3  = 5452.781F,
                Col4  = 3019.123F,
                Col5  = 2338.009F,
                Col6  = 894.0856F,
                Col7  = 479.2575F,
                Col8  = 358.4319F,
                Col9  = 283.7598F,
                Col10 = 253.8049F,
                Col11 = 256.5529F,
                Col12 = 257.3511F,
                Col13 = 268.1667F,
                Col14 = 288.2473F,
                Col15 = 289.4342F,
                Col16 = 0F,
            };

            // Make a single prediction on the sample data and print results
            var predictionResult = ConsumeModel.Predict(sampleData);

            Console.WriteLine("Using model to make single prediction -- Comparing actual Col0 with predicted Col0 from sample data...\n\n");
            Console.WriteLine($"Col1: {sampleData.Col1}");
            Console.WriteLine($"Col2: {sampleData.Col2}");
            Console.WriteLine($"Col3: {sampleData.Col3}");
            Console.WriteLine($"Col4: {sampleData.Col4}");
            Console.WriteLine($"Col5: {sampleData.Col5}");
            Console.WriteLine($"Col6: {sampleData.Col6}");
            Console.WriteLine($"Col7: {sampleData.Col7}");
            Console.WriteLine($"Col8: {sampleData.Col8}");
            Console.WriteLine($"Col9: {sampleData.Col9}");
            Console.WriteLine($"Col10: {sampleData.Col10}");
            Console.WriteLine($"Col11: {sampleData.Col11}");
            Console.WriteLine($"Col12: {sampleData.Col12}");
            Console.WriteLine($"Col13: {sampleData.Col13}");
            Console.WriteLine($"Col14: {sampleData.Col14}");
            Console.WriteLine($"Col15: {sampleData.Col15}");
            Console.WriteLine($"Col16: {sampleData.Col16}");
            Console.WriteLine($"\n\nPredicted Col0 value {predictionResult.Prediction} \nPredicted Col0 scores: [{String.Join(",", predictionResult.Score)}]\n\n");
            Console.WriteLine("=============== End of process, hit any key to finish ===============");
            Console.ReadKey();
        }
Esempio n. 29
0
        static void Main(string[] args)
        {
            // Create single instance of sample data from first line of dataset for model input
            ModelInput sampleData = new ModelInput()
            {
                Listed_in = @"International TV Shows, TV Dramas, TV Sci-Fi & Fantasy",
            };

            // Make a single prediction on the sample data and print results
            var predictionResult = ConsumeModel.Predict(sampleData);

            Console.WriteLine("Using model to make single prediction -- Comparing actual Type with predicted Type from sample data...\n\n");
            Console.WriteLine($"Listed_in: {sampleData.Listed_in}");
            Console.WriteLine($"\n\nPredicted Type value {predictionResult.Prediction} \nPredicted Type scores: [{String.Join(",", predictionResult.Score)}]\n\n");
            Console.WriteLine("=============== End of process, hit any key to finish ===============");
            Console.ReadKey();
        }
Esempio n. 30
0
        static void Main(string[] args)
        {
            // Create single instance of sample data from first line of dataset for model input
            ModelInput sampleData = new ModelInput()
            {
                Col0 = @"Wow... Loved this place.",
            };

            // Make a single prediction on the sample data and print results
            var predictionResult = ConsumeModel.Predict(sampleData);

            Console.WriteLine("Using model to make single prediction -- Comparing actual Col1 with predicted Col1 from sample data...\n\n");
            Console.WriteLine($"Col0: {sampleData.Col0}");
            Console.WriteLine($"\n\nPredicted Col1 value {predictionResult.Prediction} \nPredicted Col1 scores: [{String.Join(",", predictionResult.Score)}]\n\n");
            Console.WriteLine("=============== End of process, hit any key to finish ===============");
            Console.ReadKey();
        }