static void Main(string[] args) { var patientClasses = DataReader.LoadCsv("Data/csvResult.dat"); var patientFeatures = DataReader.LoadCsv("Data/csvFeatures.dat"); ContinousFeaturesRanges.Buckets = 10; int[] featuresIds = null;// new[] { 4, 5, 6, 20 }; IList <Patient> patients = PatientCreator.Create(patientClasses, patientFeatures, featuresIds); var crossDataAlgorithm = new CrossDataAlgorithm(patients, 5); foreach (var confusionMatrixData in crossDataAlgorithm.ConfusionMatrixDatas) { ConfusionMatrixCreator.ShowConfusionMatrix(confusionMatrixData); } }
public void ConfusionMatrixCreator_TrueClassPatient_ConfusionMatrix() { IList <Patient> patients = new List <Patient> { new Patient(Classification.Normal, null) { BayesClassification = Classification.Normal, } }; var cmc = new ConfusionMatrixCreator(); var confM = cmc.CreateConfusionMatrix(patients, 1, Group.A); Assert.Equal(1, confM.ConfusionMatrix[0, 0]); }
public CrossDataAlgorithm(IList <Patient> patients, int repetitions) { ConfusionMatrixDatas = new List <ConfusionMatrixData>(); ConfusionMatrixCreator = new ConfusionMatrixCreator(); PatientsGroupsList = new List <PatientsGroups>(); for (int i = 0; i < repetitions; i++) { PatientsGroupsList.Add(new PatientsGroups(patients)); } _actualRandomNmb = 0; foreach (var patientsGroups in PatientsGroupsList) { _actualRandomNmb++; DoubleCrossValidation(patientsGroups); } }