public Classifiers.IClassifier learn_random_forest_on_known_points(Func <double[], double> meFunc, Func <double[], double[]> calcDerivative, double allowErr) { int[] count = new int[N]; for (int i = 0; i < N; i++) { count[i] = (Min[i] == Max[i]) ? 1 : NGRID; } create_grid(count); analyse_voronoi(); analyse_error(); int n = xf.Length; Classifiers.LabeledData[] ldata = new Classifiers.LabeledData[n]; int featureCount = 0; for (int i = 0; i < n; i++) { double[] feature = build_fetures_from_existing_points(i, calcDerivative); ldata[i] = new Classifiers.LabeledData(feature, 1); featureCount = feature.Length; } Classifiers.IClassifier cls = new Classifiers.RandomForest(); Classifiers.RandomForestParams ps = new Classifiers.RandomForestParams(ldata, n /* samples count */, featureCount /* features count */, 2 /* classes count */, n / 10 /* trees count */, 5 /* count of features to do split in a tree */, 0.7 /* percent of a training set of samples */ /* used to build individual trees. */); cls.train(ps); double trainModelPrecision; cls.validate(ldata, out trainModelPrecision); Console.WriteLine("Model precision on training dataset: " + trainModelPrecision); return(cls); }
public void do_random_forest_analyse(Classifiers.IClassifier cls, double allowErr, Func <double[], double> meFunc, Func <double[], double[]> calcDerivative) { int[] count = new int[N]; for (int i = 0; i < N; i++) { count[i] = (Min[i] == Max[i]) ? 1 : NGRID; } create_grid(count); analyse_voronoi(); analyse_error(); int n = candidates.Length; Console.WriteLine(candidates.Length); //int n = grid.Node.Length; Classifiers.LabeledData[] ldata = new Classifiers.LabeledData[n]; int featureCount = 0; for (int i = 0; i < n; i++) { // min, max in locality double maxNeighbours = double.MinValue; double minNeighbours = double.MaxValue; foreach (var neighbour in grid.Neighbours(candidates[i])) //foreach (var neighbour in grid.Neighbours(i)) { double[] calcNeighbour = (double[])grid.Node[neighbour].Clone(); this.func.Calculate(calcNeighbour); if (calcNeighbour[calcNeighbour.Length - 1] < minNeighbours) { minNeighbours = calcNeighbour[calcNeighbour.Length - 1]; } if (calcNeighbour[calcNeighbour.Length - 1] > maxNeighbours) { maxNeighbours = calcNeighbour[calcNeighbour.Length - 1]; } } // current val double[] cuurentNode = (double[])grid.Node[candidates[i]].Clone(); // double[] cuurentNode = (double[])grid.Node[i].Clone(); this.func.Calculate(cuurentNode); double cuurentNodeVal = cuurentNode[cuurentNode.Length - 1]; if (cuurentNodeVal < minNeighbours) { minNeighbours = cuurentNodeVal; } if (cuurentNodeVal > maxNeighbours) { maxNeighbours = cuurentNodeVal; } // is real function and approximation are equal, class for point //derivative double[] derivative = calcDerivative(grid.Node[candidates[i]]); //double[] derivative = calcDerivative(grid.Node[i]); // build features vector double[] features = new double[5 + derivative.Length]; features[0] = borderdist[i]; features[1] = error[i]; features[2] = maxNeighbours; features[3] = minNeighbours; features[4] = cuurentNodeVal; for (int k = 0; k < derivative.Length; k++) { features[5 + k] = derivative[k]; } ldata[i] = new Classifiers.LabeledData(features, 0); featureCount = features.Length; } List <int> newCandidates = new List <int>(); int[] y = new int[ldata.Length]; for (int i = 0; i < ldata.Length; i++) { cls.infer(ldata[i].data, out y[i]); if (y[i] == 1) { //newCandidates.Add(candidates[i]); newCandidates.Add(i); } } candidates = newCandidates.ToArray(); Console.WriteLine(candidates.Length); xfcandidates = Tools.Sub(grid.Node, candidates); }
public Classifiers.IClassifier learn_random_forest_on_grid(Func <double[], double> meFunc, Func <double[], double[]> calcDerivative, double allowErr) { int[] count = new int[N]; for (int i = 0; i < N; i++) { count[i] = (Min[i] == Max[i]) ? 1 : NGRID; } create_grid(count); analyse_voronoi(); analyse_error(); int n = grid.Node.Length + xf.Length; // int n = grid.Node.Length; Classifiers.LabeledData[] ldata = new Classifiers.LabeledData[n]; int featureCount = 0; for (int i = 0; i < grid.Node.Length; i++) { // min, max in locality double maxNeighbours = double.MinValue; double minNeighbours = double.MaxValue; foreach (var neighbour in grid.Neighbours(i)) { double[] calcNeighbour = (double[])grid.Node[neighbour].Clone(); this.func.Calculate(calcNeighbour); if (calcNeighbour[calcNeighbour.Length - 1] < minNeighbours) { minNeighbours = calcNeighbour[calcNeighbour.Length - 1]; } if (calcNeighbour[calcNeighbour.Length - 1] > maxNeighbours) { maxNeighbours = calcNeighbour[calcNeighbour.Length - 1]; } } // current val double[] cuurentNode = (double[])grid.Node[i].Clone(); this.func.Calculate(cuurentNode); double cuurentNodeVal = cuurentNode[cuurentNode.Length - 1]; if (cuurentNodeVal < minNeighbours) { minNeighbours = cuurentNodeVal; } if (cuurentNodeVal > maxNeighbours) { maxNeighbours = cuurentNodeVal; } // is real function and approximation are equal, class for point int pointClass = 0; if (Math.Abs(meFunc(grid.Node[i]) - cuurentNodeVal) > allowErr) { pointClass = 1; } //derivative double[] derivative = calcDerivative(grid.Node[i]); // build features vector double[] features = new double[5 + derivative.Length]; features[0] = borderdist[i]; features[1] = error[i]; features[2] = maxNeighbours; features[3] = minNeighbours; features[4] = cuurentNodeVal; for (int k = 0; k < derivative.Length; k++) { features[5 + k] = derivative[k]; } ldata[i] = new Classifiers.LabeledData(features, pointClass); featureCount = features.Length; } for (int i = 0; i < xf.Length; i++) { double[] feature = build_fetures_from_existing_points(i, calcDerivative); ldata[grid.Node.Length + i] = new Classifiers.LabeledData(feature, 0); featureCount = feature.Length; } Classifiers.IClassifier cls = new Classifiers.RandomForest(); Classifiers.RandomForestParams ps = new Classifiers.RandomForestParams(ldata, n /* samples count */, featureCount /* features count */, 2 /* classes count */, n / 10 /* trees count */, 6 /* count of features to do split in a tree */, 0.7 /* percent of a training set of samples */ /* used to build individual trees. */); cls.train(ps); double trainModelPrecision; cls.validate(ldata, out trainModelPrecision); Console.WriteLine("Model precision on training dataset: " + trainModelPrecision); return(cls); }
private void analyse_voronoi() { //вычисляю принадлежность узлов сетки доменам (графовый алгоритм на базе структуры уровней смежности) SortedSet <int>[] adjncy = new SortedSet <int> [xf.Length]; for (int i = 0; i < xf.Length; i++) { adjncy[i] = new SortedSet <int>(); } Console.WriteLine("Разбиение пространства на домены"); Queue <int> queue = new Queue <int>(); domain = new int[grid.Node.Length]; double[] dist = new double[grid.Node.Length]; for (int i = 0; i < domain.Length; i++) { domain[i] = -1; dist[i] = double.PositiveInfinity; } for (int i = 0; i < xf.Length; i++) { int index; grid.ToIndex(xf[i], out index); dist[index] = distanceX(grid.Node[index], xf[i]); domain[index] = i; //setvalue(index, xf[i]); queue.Enqueue(index); } while (queue.Count > 0) { int index = queue.Dequeue(); int i = domain[index]; foreach (var adj in grid.Neighbours(index)) { double d = distanceX(grid.Node[adj], xf[i]); if (domain[adj] >= 0) { adjncy[domain[adj]].Add(i); adjncy[i].Add(domain[adj]); if (d < dist[adj]) { domain[adj] = i; dist[adj] = d; } continue; } domain[adj] = i; dist[adj] = d; //setvalue(adj, xf[i]); queue.Enqueue(adj); } } Console.WriteLine("Построение графа доменов"); //строю граф соседства доменов graph = new int[xf.Length][]; for (int i = 0; i < xf.Length; i++) { adjncy[i].Add(i); graph[i] = adjncy[i].ToArray(); } Console.WriteLine("Построение диграммы Вороного на сетке"); //уточняю домены (диаграмма вороного на сетке) for (int i = 0; i < grid.Node.Length; i++) { double[] xy = grid.Node[i]; int[] adj = graph[domain[i]]; double min = double.PositiveInfinity; for (int j = 0; j < adj.Length; j++) { double d = distanceX(xy, xf[adj[j]]); if (min > d) { min = d; domain[i] = adj[j]; } } } Console.WriteLine("Вычисление границ доменов"); //вычисляю границы доменов borderdist = new double[grid.Node.Length]; bordernear = new int[grid.Node.Length]; for (int i = 0; i < grid.Node.Length; i++) { borderdist[i] = double.PositiveInfinity; bordernear[i] = -1; int dom = domain[i]; foreach (var adj in grid.Neighbours(i)) { if (domain[adj] != dom) { borderdist[i] = 0; bordernear[i] = i; queue.Enqueue(i); break; } } } candidates = queue.ToArray(); //--------------------------TO REMOVE AFTER PROPER CLASSIFIER USAGE------------------------- //--------------------------------------Too silly example----------------------------------- // Classification is binary.. Shall we use more simplest binary classifier? Classifiers.LabeledData[] ldata = new Classifiers.LabeledData[3]; ldata[0] = new Classifiers.LabeledData(new double[3] { grid.Node[0][0], borderdist[0], bordernear[0] }, 1); ldata[1] = new Classifiers.LabeledData(new double[3] { grid.Node[1][0], borderdist[1], bordernear[1] }, 1); ldata[2] = new Classifiers.LabeledData(new double[3] { grid.Node[2][0], borderdist[2], bordernear[2] }, 0); Classifiers.IClassifier cls = new Classifiers.RandomForest(); Classifiers.RandomForestParams ps = new Classifiers.RandomForestParams(ldata, 3 /* samples count */, 3 /* features count */, 2 /* classes count */, 3 /* trees count */, 2 /* count of features to do split in a tree */, 0.7 /* percent of a training set of samples */ /* used to build individual trees. */); cls.train(ps); int[] y = new int[3]; cls.infer(ldata[0].data, out y[0]); cls.infer(ldata[1].data, out y[1]); cls.infer(ldata[2].data, out y[2]); for (int i = 0; i < 3; i++) { Console.WriteLine("{0} is predicted y[{1}] from trained data sample and {2} is ground truth", y[i], i, ldata[i].label); } double trainModelPrecision; cls.validate(ldata, out trainModelPrecision); Console.WriteLine("Model precision on training dataset: " + trainModelPrecision); //------------------------------------------------------------------------------------------ //--------------------------TO REMOVE AFTER PROPER CLASSIFIER USAGE------------------------- Console.WriteLine("Построение функции расстояний до границ доменов"); //вычисляю расстояния от границ while (queue.Count > 0) { int index = queue.Dequeue(); int dom = domain[index]; int brd = bordernear[index]; foreach (var adj in grid.Neighbours(index)) { if (domain[adj] != dom) { continue; } double d = distanceX(grid.Node[adj], grid.Node[brd]); if (bordernear[adj] >= 0) { if (d < borderdist[adj]) { bordernear[adj] = brd; borderdist[adj] = d; } continue; } bordernear[adj] = brd; borderdist[adj] = d; queue.Enqueue(adj); } } Console.WriteLine("Нормировка функции расстояний до границ доменов"); //нормирую расстояния от границ for (int i = 0; i < grid.Node.Length; i++) { int dom = domain[i]; int brd = bordernear[i]; double a = distanceX(grid.Node[i], xf[dom]); double b = distanceX(grid.Node[i], grid.Node[brd]); double c = a + b; borderdist[i] = (c == 0) ? 0 : b / c; } }