Esempio n. 1
0
        public void IRID90_CholeskySolve()
        {
            Matrix i = Matrix.Identity(3, 3);

            double[][]            pvals1 = { new double[] { 1.0, 1.0, 1.0 }, new double[] { 1.0, 2.0, 3.0 }, new double[] { 1.0, 3.0, 6.0 } };
            Matrix                m1     = new Matrix(pvals1);
            CholeskyDecomposition cd1    = new CholeskyDecomposition(m1);

            Matrix inv1a  = cd1.Solve(i);
            Matrix test1a = m1 * inv1a;

            NumericAssert.AreAlmostEqual(i, test1a, "1A");
            Matrix inv1b = m1.Inverse();

            NumericAssert.AreAlmostEqual(inv1a, inv1b, "1B");

            double[][]            pvals2 = { new double[] { 25, -5, 10 }, new double[] { -5, 17, 10 }, new double[] { 10, 10, 62 } };
            Matrix                m2     = new Matrix(pvals2);
            CholeskyDecomposition cd2    = new CholeskyDecomposition(m2);

            Matrix inv2a  = cd2.Solve(i);
            Matrix test2a = m2 * inv2a;

            NumericAssert.AreAlmostEqual(i, test2a, "2A");
            Matrix inv2b = m2.Inverse();

            NumericAssert.AreAlmostEqual(inv2a, inv2b, "2B");
        }
        public double Distance(double[] x, double[] y)
        {
            double[] d = new double[x.Length];
            for (int i = 0; i < x.Length; i++)
            {
                d[i] = x[i] - y[i];
            }

            double[] z;
            if (svd != null)
            {
                z = svd.Solve(d);
            }
            else if (chol != null)
            {
                z = chol.Solve(d);
            }
            else
            {
                z = precision.Dot(d);
            }

            double sum = 0.0;

            for (int i = 0; i < d.Length; i++)
            {
                sum += d[i] * z[i];
            }
            return(Math.Abs(sum));
        }
Esempio n. 3
0
        /// <summary>
        ///   Gets the probability density function (pdf) for
        ///   this distribution evaluated at point <c>x</c>.
        /// </summary>
        /// <param name="x">A single point in the distribution range. For a
        ///   univariate distribution, this should be a single
        ///   double value. For a multivariate distribution,
        ///   this should be a double array.</param>
        /// <returns>
        ///   The probability of <c>x</c> occurring
        ///   in the current distribution.
        /// </returns>
        /// <remarks>
        ///   The Probability Density Function (PDF) describes the
        ///   probability that a given value <c>x</c> will occur.
        /// </remarks>
        public override double ProbabilityDensityFunction(params double[] x)
        {
            if (x.Length != Dimension)
            {
                throw new DimensionMismatchException("x", "The vector should have the same dimension as the distribution.");
            }

            double[] z = x.Subtract(mean);
            double[] a = chol.Solve(z);
            double   b = a.InnerProduct(z);

            // Original code:
            // double r = constant * System.Math.Exp(-b/2);

            // Let lnconstant = log( constant )
            //
            //     r = constant * exp( b/2 )
            //
            //     r = exp(log(constant) * exp( b/2 )
            //     r = exp(lnconstant) * exp( b/2 )
            //     r = exp( lnconstant + b/2 )
            //

            double r = Math.Exp(lnconstant - b / 2);

            return(r > 1.0 ? 1.0 : r);
        }
Esempio n. 4
0
        public void CholeskyDecomposition2()
        {
            double[][]            pvals = { new double[] { 1.0, 1.0, 1.0 }, new double[] { 1.0, 2.0, 3.0 }, new double[] { 1.0, 3.0, 6.0 } };
            GeneralMatrix         A     = new GeneralMatrix(pvals);
            CholeskyDecomposition chol  = A.chol();
            GeneralMatrix         X     = chol.Solve(GeneralMatrix.Identity(3, 3));

            Assert.IsTrue(GeneralTests.Check(A.Multiply(X), GeneralMatrix.Identity(3, 3)));
        }
        /// <summary>
        ///   Gets the probability density function (pdf) for
        ///   this distribution evaluated at point <c>x</c>.
        /// </summary>
        ///
        /// <param name="x">A single point in the distribution range.
        ///   For a matrix distribution, such as the Wishart's, this
        ///   should be a positive-definite matrix or a matrix written
        ///   in flat vector form.
        /// </param>
        ///
        /// <returns>
        ///   The probability of <c>x</c> occurring
        ///   in the current distribution.
        /// </returns>
        ///
        /// <remarks>
        ///   The Probability Density Function (PDF) describes the
        ///   probability that a given value <c>x</c> will occur.
        /// </remarks>
        ///
        public double LogProbabilityDensityFunction(double[,] x)
        {
            var chol = new CholeskyDecomposition(x);

            double det = chol.Determinant;

            double[,] Vx = chol.Solve(inverseScaleMatrix);

            double z = -0.5 * Vx.Trace();

            return(Math.Log(constant) + power * Math.Log(det) + z);
        }
Esempio n. 6
0
        /// <summary>
        ///   Gets the probability density function (pdf) for
        ///   this distribution evaluated at point <c>x</c>.
        /// </summary>
        /// <param name="x">A single point in the distribution range. For a
        ///   univariate distribution, this should be a single
        ///   double value. For a multivariate distribution,
        ///   this should be a double array.</param>
        /// <returns>
        ///   The probability of <c>x</c> occurring
        ///   in the current distribution.
        /// </returns>
        /// <remarks>
        ///   The Probability Density Function (PDF) describes the
        ///   probability that a given value <c>x</c> will occur.
        /// </remarks>
        public override double ProbabilityDensityFunction(params double[] x)
        {
            double[] z = x.Subtract(mean);

            double[] a = (svd == null) ? chol.Solve(z) : svd.Solve(z);

            double b = a.InnerProduct(z);

            double r = constant * System.Math.Exp(-0.5 * b);

            return(r > 1.0 ? 1.0 : r);
        }
Esempio n. 7
0
        /// <summary>
        ///   Gets the probability density function (pdf) for
        ///   this distribution evaluated at point <c>x</c>.
        /// </summary>
        ///
        /// <param name="x">A single point in the distribution range. For a
        ///   univariate distribution, this should be a single
        ///   double value. For a multivariate distribution,
        ///   this should be a double array.</param>
        ///
        /// <returns>
        ///   The probability of <c>x</c> occurring
        ///   in the current distribution.
        /// </returns>
        ///
        /// <remarks>
        ///   The Probability Density Function (PDF) describes the
        ///   probability that a given value <c>x</c> will occur.
        /// </remarks>
        ///
        public override double ProbabilityDensityFunction(params double[] x)
        {
            if (x.Length != Dimension)
            {
                throw new DimensionMismatchException("x", "The vector should have the same dimension as the distribution.");
            }

            double[] z = new double[mean.Length];
            for (int i = 0; i < x.Length; i++)
            {
                z[i] = x[i] - mean[i];
            }

            double[] a = chol.Solve(z);

            double b = 0;

            for (int i = 0; i < z.Length; i++)
            {
                b += a[i] * z[i];
            }

            // Original code:
            // double r = constant * System.Math.Exp(-b/2);

            // Let lnconstant = log( constant )
            //
            //     r = constant * exp( b/2 )
            //
            //     r = exp(log(constant) * exp( b/2 )
            //     r = exp(lnconstant) * exp( b/2 )
            //     r = exp( lnconstant + b/2 )
            //

            double r = Math.Exp(lnconstant - b * 0.5);

            return(r > 1 ? 1 : r);
        }
        /// <summary>
        ///   Gets the probability density function (pdf) for
        ///   this distribution evaluated at point <c>x</c>.
        /// </summary>
        ///
        /// <param name="x">A single point in the distribution range.
        ///   For a matrix distribution, such as the Wishart's, this
        ///   should be a positive-definite matrix or a matrix written
        ///   in flat vector form.
        /// </param>
        ///
        /// <returns>
        ///   The probability of <c>x</c> occurring
        ///   in the current distribution.
        /// </returns>
        ///
        /// <remarks>
        ///   The Probability Density Function (PDF) describes the
        ///   probability that a given value <c>x</c> will occur.
        /// </remarks>
        ///
        public double ProbabilityDensityFunction(double[,] x)
        {
            var chol = new CholeskyDecomposition(x);

            double det = chol.Determinant;

            double[,] Vx = chol.Solve(inverseScaleMatrix);

            double z = -0.5 * Vx.Trace();
            double a = Math.Pow(det, power);
            double b = Math.Exp(z);

            return(constant * a * b);
        }
Esempio n. 9
0
        public void CholeskySolveExample()
        {
            // This is a very simple 3 X 3 problem I just wrote down to test the Cholesky solver
            SymmetricMatrix S = new SymmetricMatrix(3);

            S[0, 0] = 4.0;
            S[1, 0] = -2.0; S[1, 1] = 5.0;
            S[2, 0] = 1.0;  S[2, 1] = 3.0; S[2, 2] = 6.0;
            CholeskyDecomposition CD = S.CholeskyDecomposition();

            ColumnVector b = new ColumnVector(9.0, 7.0, 15.0);
            ColumnVector x = CD.Solve(b);

            Assert.IsTrue(TestUtilities.IsNearlyEqual(S * x, b));
        }
Esempio n. 10
0
        public void MatrixCholeskyDecomposition()
        {
            double[][] pvals =
            {
                new double[] { 25, -5, 10 },
                new double[] { -5, 17, 10 },
                new double[] { 10, 10, 62 }
            };

            Matrix e = new Matrix(pvals);
            CholeskyDecomposition chol = e.CholeskyDecomposition;
            Matrix l = chol.TriangularFactor;

            Assert.That(l * Matrix.Transpose(l), NumericIs.AlmostEqualTo(e), "CholeskyDecomposition");
            Matrix g = chol.Solve(Matrix.Identity(3, 3));

            Assert.That(e * g, NumericIs.AlmostEqualTo(Matrix.Identity(3, 3)), "CholeskyDecomposition Solve");
        }
Esempio n. 11
0
    /// <summary>
    /// Choleskies the solve.
    /// </summary>
    /// <param name="matrix1">The matrix1.</param>
    /// <param name="matrix2">The matrix2.</param>
    /// <param name="matrixResult">The matrix result.</param>
    /// <returns></returns>
    public static RelationalOperation CholeskySolve(NumericMatrixFactor matrix1, NumericMatrixFactor matrix2, out NumericMatrixFactor matrixResult)
    {
        var values1  = matrix1.Coefficients;
        var cMatrix1 = new NumericMatrixFactor(matrix1, new VariableFactor('C', 1), null);
        var values2  = matrix2.Coefficients;
        var cMatrix2 = new NumericMatrixFactor(matrix2, new VariableFactor('C', 1), null);
        var solver   = new CholeskyDecomposition(values1.AsSpan2D());
        var values3  = solver.Solve(values2).Items;

        matrixResult = new NumericMatrixFactor(values3, false);
        var equation = new RelationalOperation(
            ComparisonOperators.Equals,
            new NomialExpression(
                new ProductTerm(new NumericFactor(1), cMatrix1, cMatrix2)
                ),
            new ProductTerm(new NumericFactor(1), matrixResult)
            );

        return(equation);
    }
Esempio n. 12
0
        /// <summary>
        ///   Gets the probability density function (pdf) for
        ///   this distribution evaluated at point <c>x</c>.
        /// </summary>
        ///
        /// <param name="x">A single point in the distribution range.</param>
        ///
        /// <returns>
        ///   The probability of <c>x</c> occurring
        ///   in the current distribution.
        /// </returns>
        ///
        /// <remarks>
        ///   The Probability Density Function (PDF) describes the
        ///   probability that a given value <c>x</c> will occur.
        /// </remarks>
        ///
        public override double ProbabilityDensityFunction(double[] x)
        {
            // http://www.buch-kromann.dk/tine/nonpar/Nonparametric_Density_Estimation_multidim.pdf
            // http://sfb649.wiwi.hu-berlin.de/fedc_homepage/xplore/ebooks/html/spm/spmhtmlnode18.html

            double sum = 0;

            CholeskyDecomposition chol = new CholeskyDecomposition(smoothing);

            double[] delta = new double[Dimension];
            for (int i = 0; i < samples.Length; i++)
            {
                for (int j = 0; j < x.Length; j++)
                {
                    delta[j] = (x[j] - samples[i][j]);
                }

                sum += kernel.Function(chol.Solve(delta));
            }

            return(sum / (samples.Length * determinant));
        }
        public static Double[,] Inverse(Double[,] matrix)
        {
            var rows   = matrix.GetLength(0);
            var cols   = matrix.GetLength(1);
            var target = Helpers.One(cols);

            if (cols < 24)
            {
                var lu = new LUDecomposition(matrix);
                return(lu.Solve(target));
            }
            else if (Helpers.IsSymmetric(matrix))
            {
                var cho = new CholeskyDecomposition(matrix);
                return(cho.Solve(target));
            }
            else
            {
                var qr = QRDecomposition.Create(matrix);
                return(qr.Solve(target));
            }
        }
        public double Mahalanobis(double[] x)
        {
            if (x.Length != Dimension)
            {
                throw new DimensionMismatchException("x", "The vector should have the same dimension as the distribution.");
            }

            var z = new double[mean.Length];

            for (int i = 0; i < x.Length; i++)
            {
                z[i] = x[i] - mean[i];
            }

            double[] a = (chol == null) ? svd.Solve(z) : chol.Solve(z);

            double b = 0;

            for (int i = 0; i < z.Length; i++)
            {
                b += a[i] * z[i];
            }
            return(b);
        }
Esempio n. 15
0
        public void AllTests()
        {
            Matrix A, B, C, Z, O, I, R, S, X, SUB, M, T, SQ, DEF, SOL;
            double tmp;

            double[]   columnwise = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 };
            double[]   rowwise = { 1.0, 4.0, 7.0, 10.0, 2.0, 5.0, 8.0, 11.0, 3.0, 6.0, 9.0, 12.0 };
            double[][] avals = { new double[] { 1.0, 4.0, 7.0, 10.0 }, new double[] { 2.0, 5.0, 8.0, 11.0 }, new double[] { 3.0, 6.0, 9.0, 12.0 } };
            double[][] rankdef = avals;
            double[][] tvals = { new double[] { 1.0, 2.0, 3.0 }, new double[] { 4.0, 5.0, 6.0 }, new double[] { 7.0, 8.0, 9.0 }, new double[] { 10.0, 11.0, 12.0 } };
            double[][] subavals = { new double[] { 5.0, 8.0, 11.0 }, new double[] { 6.0, 9.0, 12.0 } };
            double[][] pvals = { new double[] { 25, -5, 10 }, new double[] { -5, 17, 10 }, new double[] { 10, 10, 62 } };
            double[][] ivals = { new double[] { 1.0, 0.0, 0.0, 0.0 }, new double[] { 0.0, 1.0, 0.0, 0.0 }, new double[] { 0.0, 0.0, 1.0, 0.0 } };
            double[][] evals = { new double[] { 0.0, 1.0, 0.0, 0.0 }, new double[] { 1.0, 0.0, 2e-7, 0.0 }, new double[] { 0.0, -2e-7, 0.0, 1.0 }, new double[] { 0.0, 0.0, 1.0, 0.0 } };
            double[][] square = { new double[] { 166.0, 188.0, 210.0 }, new double[] { 188.0, 214.0, 240.0 }, new double[] { 210.0, 240.0, 270.0 } };
            double[][] sqSolution = { new double[] { 13.0 }, new double[] { 15.0 } };
            double[][] condmat = { new double[] { 1.0, 3.0 }, new double[] { 7.0, 9.0 } };
            int        rows = 3, cols = 4;
            int        invalidld = 5;                  /* should trigger bad shape for construction with val */
            int        validld = 3;                    /* leading dimension of intended test Matrices */
            int        nonconformld = 4;               /* leading dimension which is valid, but nonconforming */
            int        ib = 1, ie = 2, jb = 1, je = 3; /* index ranges for sub Matrix */

            int[]  rowindexset       = new int[] { 1, 2 };
            int[]  badrowindexset    = new int[] { 1, 3 };
            int[]  columnindexset    = new int[] { 1, 2, 3 };
            int[]  badcolumnindexset = new int[] { 1, 2, 4 };
            double columnsummax      = 33.0;
            double rowsummax         = 30.0;
            double sumofdiagonals    = 15;
            double sumofsquares      = 650;

            #region Testing constructors and constructor-like methods

            // Constructors and constructor-like methods:
            // double[], int
            // double[,]
            // int, int
            // int, int, double
            // int, int, double[,]
            // Create(double[,])
            // Random(int,int)
            // Identity(int)

            try
            {
                // check that exception is thrown in packed constructor with invalid length
                A = new Matrix(columnwise, invalidld);
                Assert.Fail("Catch invalid length in packed constructor: exception not thrown for invalid input");
            }
            catch (ArgumentException) { }

            A           = new Matrix(columnwise, validld);
            B           = new Matrix(avals);
            tmp         = B[0, 0];
            avals[0][0] = 0.0;
            C           = B - A;
            avals[0][0] = tmp;
            B           = Matrix.Create(avals);
            tmp         = B[0, 0];
            avals[0][0] = 0.0;
            Assert.AreEqual((tmp - B[0, 0]), 0.0, "Create");

            avals[0][0] = columnwise[0];
            I           = new Matrix(ivals);
            NumericAssert.AreAlmostEqual(I, Matrix.Identity(3, 4), "Identity");

            #endregion

            #region Testing access methods

            // Access Methods:
            // getColumnDimension()
            // getRowDimension()
            // getArray()
            // getArrayCopy()
            // getColumnPackedCopy()
            // getRowPackedCopy()
            // get(int,int)
            // GetMatrix(int,int,int,int)
            // GetMatrix(int,int,int[])
            // GetMatrix(int[],int,int)
            // GetMatrix(int[],int[])
            // set(int,int,double)
            // SetMatrix(int,int,int,int,Matrix)
            // SetMatrix(int,int,int[],Matrix)
            // SetMatrix(int[],int,int,Matrix)
            // SetMatrix(int[],int[],Matrix)

            // Various get methods
            B = new Matrix(avals);
            Assert.AreEqual(B.RowCount, rows, "getRowDimension");
            Assert.AreEqual(B.ColumnCount, cols, "getColumnDimension");

            B = new Matrix(avals);
            double[][] barray = (Matrix)B;
            Assert.AreSame(barray, avals, "getArray");

            barray = B.Clone();
            Assert.AreNotSame(barray, avals, "getArrayCopy");
            NumericAssert.AreAlmostEqual(new Matrix(barray), B, "getArrayCopy II");

            //            double[] bpacked = B.ColumnPackedCopy;
            //            try
            //            {
            //                check(bpacked, columnwise);
            //                try_success("getColumnPackedCopy... ", "");
            //            }
            //            catch (System.SystemException e)
            //            {
            //                errorCount = try_failure(errorCount, "getColumnPackedCopy... ", "data not successfully (deep) copied by columns");
            //                System.Console.Out.WriteLine(e.Message);
            //            }
            //            bpacked = B.RowPackedCopy;
            //            try
            //            {
            //                check(bpacked, rowwise);
            //                try_success("getRowPackedCopy... ", "");
            //            }
            //            catch (System.SystemException e)
            //            {
            //                errorCount = try_failure(errorCount, "getRowPackedCopy... ", "data not successfully (deep) copied by rows");
            //                System.Console.Out.WriteLine(e.Message);
            //            }

            try
            {
                tmp = B[B.RowCount, B.ColumnCount - 1];
                Assert.Fail("get(int,int): OutOfBoundsException expected but not thrown");
            }
            catch (IndexOutOfRangeException) { }
            try
            {
                tmp = B[B.RowCount - 1, B.ColumnCount];
                Assert.Fail("get(int,int): OutOfBoundsException expected but not thrown II");
            }
            catch (IndexOutOfRangeException) { }
            Assert.AreEqual(B[B.RowCount - 1, B.ColumnCount - 1], avals[B.RowCount - 1][B.ColumnCount - 1], "get(int,int)");

            SUB = new Matrix(subavals);
            try
            {
                M = B.GetMatrix(ib, ie + B.RowCount + 1, jb, je);
                Assert.Fail("GetMatrix(int,int,int,int): IndexOutOfBoundsException expected but not thrown");
            }
            catch (IndexOutOfRangeException) { }
            try
            {
                M = B.GetMatrix(ib, ie, jb, je + B.ColumnCount + 1);
                Assert.Fail("GetMatrix(int,int,int,int): IndexOutOfBoundsException expected but not thrown II");
            }
            catch (IndexOutOfRangeException) { }

            M = B.GetMatrix(ib, ie, jb, je);
            NumericAssert.AreAlmostEqual(SUB, M, "GetMatrix(int,int,int,int)");

            try
            {
                M = B.GetMatrix(ib, ie, badcolumnindexset);
                Assert.Fail("GetMatrix(int,int,int[]): IndexOutOfBoundsException expected but not thrown");
            }
            catch (IndexOutOfRangeException) { }
            try
            {
                M = B.GetMatrix(ib, ie + B.RowCount + 1, columnindexset);
                Assert.Fail("GetMatrix(int,int,int[]): IndexOutOfBoundsException expected but not thrown II");
            }
            catch (IndexOutOfRangeException) { }

            M = B.GetMatrix(ib, ie, columnindexset);
            NumericAssert.AreAlmostEqual(SUB, M, "GetMatrix(int,int,int[])");

            try
            {
                M = B.GetMatrix(badrowindexset, jb, je);
                Assert.Fail("GetMatrix(int[],int,int): IndexOutOfBoundsException expected but not thrown");
            }
            catch (IndexOutOfRangeException) { }
            try
            {
                M = B.GetMatrix(rowindexset, jb, je + B.ColumnCount + 1);
                Assert.Fail("GetMatrix(int[],int,int): IndexOutOfBoundsException expected but not thrown II");
            }
            catch (IndexOutOfRangeException) { }

            M = B.GetMatrix(rowindexset, jb, je);
            NumericAssert.AreAlmostEqual(SUB, M, "GetMatrix(int[],int,int)");

            try
            {
                M = B.GetMatrix(badrowindexset, columnindexset);
                Assert.Fail("GetMatrix(int[],int[]): IndexOutOfBoundsException expected but not thrown");
            }
            catch (IndexOutOfRangeException) { }
            try
            {
                M = B.GetMatrix(rowindexset, badcolumnindexset);
                Assert.Fail("GetMatrix(int[],int[]): IndexOutOfBoundsException expected but not thrown II");
            }
            catch (IndexOutOfRangeException) { }

            M = B.GetMatrix(rowindexset, columnindexset);
            NumericAssert.AreAlmostEqual(SUB, M, "GetMatrix(int[],int[])");

            // Various set methods:
            try
            {
                B[B.RowCount, B.ColumnCount - 1] = 0.0;
                Assert.Fail("set(int,int,double): IndexOutOfBoundsException expected but not thrown");
            }
            catch (IndexOutOfRangeException) { }
            try
            {
                B[B.RowCount - 1, B.ColumnCount] = 0.0;
                Assert.Fail("set(int,int,double): IndexOutOfBoundsException expected but not thrown II");
            }
            catch (IndexOutOfRangeException) { }

            B[ib, jb] = 0.0;
            tmp       = B[ib, jb];
            NumericAssert.AreAlmostEqual(tmp, 0.0, "set(int,int,double)");

            M = new Matrix(2, 3, 0.0);
            try
            {
                B.SetMatrix(ib, ie + B.RowCount + 1, jb, je, M);
                Assert.Fail("SetMatrix(int,int,int,int,Matrix): IndexOutOfBoundsException expected but not thrown");
            }
            catch (IndexOutOfRangeException) { }
            try
            {
                B.SetMatrix(ib, ie, jb, je + B.ColumnCount + 1, M);
                Assert.Fail("SetMatrix(int,int,int,int,Matrix): IndexOutOfBoundsException expected but not thrown II");
            }
            catch (IndexOutOfRangeException) { }

            B.SetMatrix(ib, ie, jb, je, M);
            NumericAssert.AreAlmostEqual(M - B.GetMatrix(ib, ie, jb, je), M, "SetMatrix(int,int,int,int,Matrix)");
            B.SetMatrix(ib, ie, jb, je, SUB);
            try
            {
                B.SetMatrix(ib, ie + B.RowCount + 1, columnindexset, M);
                Assert.Fail("SetMatrix(int,int,int[],Matrix): IndexOutOfBoundsException expected but not thrown");
            }
            catch (IndexOutOfRangeException) { }
            try
            {
                B.SetMatrix(ib, ie, badcolumnindexset, M);
                Assert.Fail("SetMatrix(int,int,int[],Matrix): IndexOutOfBoundsException expected but not thrown II");
            }
            catch (IndexOutOfRangeException) { }

            B.SetMatrix(ib, ie, columnindexset, M);
            NumericAssert.AreAlmostEqual(M - B.GetMatrix(ib, ie, columnindexset), M, "SetMatrix(int,int,int[],Matrix)");
            B.SetMatrix(ib, ie, jb, je, SUB);
            try
            {
                B.SetMatrix(rowindexset, jb, je + B.ColumnCount + 1, M);
                Assert.Fail("SetMatrix(int[],int,int,Matrix): IndexOutOfBoundsException expected but not thrown");
            }
            catch (IndexOutOfRangeException) { }
            try
            {
                B.SetMatrix(badrowindexset, jb, je, M);
                Assert.Fail("SetMatrix(int[],int,int,Matrix): IndexOutOfBoundsException expected but not thrown II");
            }
            catch (IndexOutOfRangeException) { }

            B.SetMatrix(rowindexset, jb, je, M);
            NumericAssert.AreAlmostEqual(M - B.GetMatrix(rowindexset, jb, je), M, "SetMatrix(int[],int,int,Matrix)");

            B.SetMatrix(ib, ie, jb, je, SUB);
            try
            {
                B.SetMatrix(rowindexset, badcolumnindexset, M);
                Assert.Fail("SetMatrix(int[],int[],Matrix): IndexOutOfBoundsException expected but not thrown");
            }
            catch (IndexOutOfRangeException) { }
            try
            {
                B.SetMatrix(badrowindexset, columnindexset, M);
                Assert.Fail("SetMatrix(int[],int[],Matrix): IndexOutOfBoundsException expected but not thrown");
            }
            catch (IndexOutOfRangeException) { }

            B.SetMatrix(rowindexset, columnindexset, M);
            NumericAssert.AreAlmostEqual(M - B.GetMatrix(rowindexset, columnindexset), M, "SetMatrix(int[],int[],Matrix)");

            #endregion

            #region Testing array-like methods

            // Array-like methods:
            // Subtract
            // SubtractEquals
            // Add
            // AddEquals
            // ArrayLeftDivide
            // ArrayLeftDivideEquals
            // ArrayRightDivide
            // ArrayRightDivideEquals
            // arrayTimes
            // ArrayMultiplyEquals
            // uminus

            S = new Matrix(columnwise, nonconformld);
            R = Matrix.Random(A.RowCount, A.ColumnCount);
            A = R;
            try
            {
                S = A - S;
                Assert.Fail("Subtract conformance check: nonconformance not raised");
            }
            catch (ArgumentException) { }
            Assert.AreEqual((A - R).Norm1(), 0.0, "Subtract: difference of identical Matrices is nonzero,\nSubsequent use of Subtract should be suspect");

            A = R.Clone();
            A.Subtract(R);
            Z = new Matrix(A.RowCount, A.ColumnCount);
            try
            {
                A.Subtract(S);
                Assert.Fail("SubtractEquals conformance check: nonconformance not raised");
            }
            catch (ArgumentException) { }
            Assert.AreEqual((A - Z).Norm1(), 0.0, "SubtractEquals: difference of identical Matrices is nonzero,\nSubsequent use of Subtract should be suspect");

            A = R.Clone();
            B = Matrix.Random(A.RowCount, A.ColumnCount);
            C = A - B;
            try
            {
                S = A + S;
                Assert.Fail("Add conformance check: nonconformance not raised");
            }
            catch (ArgumentException) { }
            NumericAssert.AreAlmostEqual(C + B, A, "Add");

            C = A - B;
            C.Add(B);
            try
            {
                A.Add(S);
                Assert.Fail("AddEquals conformance check: nonconformance not raised");
            }
            catch (ArgumentException) { }
            NumericAssert.AreAlmostEqual(C, A, "AddEquals");

            A = ((Matrix)R.Clone());
            A.UnaryMinus();
            NumericAssert.AreAlmostEqual(A + R, Z, "UnaryMinus");

            A = (Matrix)R.Clone();
            O = new Matrix(A.RowCount, A.ColumnCount, 1.0);
            try
            {
                Matrix.ArrayDivide(A, S);
                Assert.Fail("ArrayRightDivide conformance check: nonconformance not raised");
            }
            catch (ArgumentException) { }

            C = Matrix.ArrayDivide(A, R);
            NumericAssert.AreAlmostEqual(C, O, "ArrayRightDivide");
            try
            {
                A.ArrayDivide(S);
                Assert.Fail("ArrayRightDivideEquals conformance check: nonconformance not raised");
            }
            catch (ArgumentException) { }

            A.ArrayDivide(R);
            NumericAssert.AreAlmostEqual(A, O, "ArrayRightDivideEquals");

            A = (Matrix)R.Clone();
            B = Matrix.Random(A.RowCount, A.ColumnCount);
            try
            {
                S = Matrix.ArrayMultiply(A, S);
                Assert.Fail("arrayTimes conformance check: nonconformance not raised");
            }
            catch (ArgumentException) { }

            C = Matrix.ArrayMultiply(A, B);
            C.ArrayDivide(B);
            NumericAssert.AreAlmostEqual(C, A, "arrayTimes");
            try
            {
                A.ArrayMultiply(S);
                Assert.Fail("ArrayMultiplyEquals conformance check: nonconformance not raised");
            }
            catch (ArgumentException) { }

            A.ArrayMultiply(B);
            A.ArrayDivide(B);
            NumericAssert.AreAlmostEqual(A, R, "ArrayMultiplyEquals");

            #endregion

            #region Testing linear algebra methods

            // LA methods:
            // Transpose
            // Multiply
            // Condition
            // Rank
            // Determinant
            // trace
            // Norm1
            // norm2
            // normF
            // normInf
            // Solve
            // solveTranspose
            // Inverse
            // chol
            // Eigen
            // lu
            // qr
            // svd

            A = new Matrix(columnwise, 3);
            T = new Matrix(tvals);
            T = Matrix.Transpose(A);
            NumericAssert.AreAlmostEqual(Matrix.Transpose(A), T, "Transpose");
            NumericAssert.AreAlmostEqual(A.Norm1(), columnsummax, "Norm1");
            NumericAssert.AreAlmostEqual(A.NormInf(), rowsummax, "NormInf");
            NumericAssert.AreAlmostEqual(A.NormF(), Math.Sqrt(sumofsquares), "NormF");
            NumericAssert.AreAlmostEqual(A.Trace(), sumofdiagonals, "Trace");
            NumericAssert.AreAlmostEqual(A.GetMatrix(0, A.RowCount - 1, 0, A.RowCount - 1).Determinant(), 0.0, "Determinant");

            SQ = new Matrix(square);
            NumericAssert.AreAlmostEqual(A * Matrix.Transpose(A), SQ, "Multiply(Matrix)");
            NumericAssert.AreAlmostEqual(0.0 * A, Z, "Multiply(double)");

            A = new Matrix(columnwise, 4);
            QRDecomposition QR = A.QRDecomposition;
            R = QR.R;
            NumericAssert.AreAlmostEqual(A, QR.Q * R, "QRDecomposition");

            SingularValueDecomposition SVD = A.SingularValueDecomposition;
            NumericAssert.AreAlmostEqual(A, SVD.LeftSingularVectors * (SVD.S * Matrix.Transpose(SVD.RightSingularVectors)), "SingularValueDecomposition");

            DEF = new Matrix(rankdef);
            NumericAssert.AreAlmostEqual(DEF.Rank(), Math.Min(DEF.RowCount, DEF.ColumnCount) - 1, "Rank");

            B   = new Matrix(condmat);
            SVD = B.SingularValueDecomposition;
            double[] singularvalues = SVD.SingularValues;
            NumericAssert.AreAlmostEqual(B.Condition(), singularvalues[0] / singularvalues[Math.Min(B.RowCount, B.ColumnCount) - 1], "Condition");

            int n = A.ColumnCount;
            A       = A.GetMatrix(0, n - 1, 0, n - 1);
            A[0, 0] = 0.0;
            LUDecomposition LU = A.LUDecomposition;
            NumericAssert.AreAlmostEqual(A.GetMatrix(LU.Pivot, 0, n - 1), LU.L * LU.U, "LUDecomposition");

            X = A.Inverse();
            NumericAssert.AreAlmostEqual(A * X, Matrix.Identity(3, 3), "Inverse");

            O   = new Matrix(SUB.RowCount, 1, 1.0);
            SOL = new Matrix(sqSolution);
            SQ  = SUB.GetMatrix(0, SUB.RowCount - 1, 0, SUB.RowCount - 1);
            NumericAssert.AreAlmostEqual(SQ.Solve(SOL), O, "Solve");

            A = new Matrix(pvals);
            CholeskyDecomposition Chol = A.CholeskyDecomposition;
            Matrix L = Chol.TriangularFactor;
            NumericAssert.AreAlmostEqual(A, L * Matrix.Transpose(L), "CholeskyDecomposition");

            X = Chol.Solve(Matrix.Identity(3, 3));
            NumericAssert.AreAlmostEqual(A * X, Matrix.Identity(3, 3), "CholeskyDecomposition Solve");

            EigenvalueDecomposition Eig = A.EigenvalueDecomposition;
            Matrix D = Eig.BlockDiagonal;
            Matrix V = Eig.EigenVectors;
            NumericAssert.AreAlmostEqual(A * V, V * D, "EigenvalueDecomposition (symmetric)");

            A   = new Matrix(evals);
            Eig = A.EigenvalueDecomposition;
            D   = Eig.BlockDiagonal;
            V   = Eig.EigenVectors;
            NumericAssert.AreAlmostEqual(A * V, V * D, "EigenvalueDecomposition (nonsymmetric)");

            #endregion
        }
 public override IVector Apply(IMatrix A, IVector b, IVector x)
 {
     double[] xs = (double[])decomp.Solve(
         new Matrix(Blas.Default.GetArrayCopy(b), b.Length));
     return(Blas.Default.SetVector(xs, x));
 }
Esempio n. 17
0
        /// <summary>An exception is thrown at the end of the process,
        /// if any error is encountered.</summary>
        [Test] public void AllTests()
        {
            Matrix A, B, C, Z, O, I, R, S, X, SUB, M, T, SQ, DEF, SOL;
            int    errorCount   = 0;
            int    warningCount = 0;
            double tmp;

            double[] columnwise = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 };
            double[] rowwise    = { 1.0, 4.0, 7.0, 10.0, 2.0, 5.0, 8.0, 11.0, 3.0, 6.0, 9.0, 12.0 };
            double[,] avals      = { { 1.0, 4.0, 7.0, 10.0 }, { 2.0, 5.0, 8.0, 11.0 }, { 3.0, 6.0, 9.0, 12.0 } };
            double[,] rankdef    = avals;
            double[,] tvals      = { { 1.0, 2.0, 3.0 }, { 4.0, 5.0, 6.0 }, { 7.0, 8.0, 9.0 }, { 10.0, 11.0, 12.0 } };
            double[,] subavals   = { { 5.0, 8.0, 11.0 }, { 6.0, 9.0, 12.0 } };
            double[,] pvals      = { { 1.0, 1.0, 1.0 }, { 1.0, 2.0, 3.0 }, { 1.0, 3.0, 6.0 } };
            double[,] ivals      = { { 1.0, 0.0, 0.0, 0.0 }, { 0.0, 1.0, 0.0, 0.0 }, { 0.0, 0.0, 1.0, 0.0 } };
            double[,] evals      = { { 0.0, 1.0, 0.0, 0.0 }, { 1.0, 0.0, 2e-7, 0.0 }, { 0.0, -2e-7, 0.0, 1.0 }, { 0.0, 0.0, 1.0, 0.0 } };
            double[,] square     = { { 166.0, 188.0, 210.0 }, { 188.0, 214.0, 240.0 }, { 210.0, 240.0, 270.0 } };
            double[,] sqSolution = { { 13.0 }, { 15.0 } };
            double[,] condmat    = { { 1.0, 3.0 }, { 7.0, 9.0 } };
            int rows = 3, cols = 4;
            int invalidld = 5;                  /* should trigger bad shape for construction with val */
            int validld = 3;                    /* leading dimension of intended test Matrices */
            int nonconformld = 4;               /* leading dimension which is valid, but nonconforming */
            int ib = 1, ie = 2, jb = 1, je = 3; /* index ranges for sub Matrix */

            int[]  rowindexset       = new int[] { 1, 2 };
            int[]  badrowindexset    = new int[] { 1, 3 };
            int[]  columnindexset    = new int[] { 1, 2, 3 };
            int[]  badcolumnindexset = new int[] { 1, 2, 4 };
            double columnsummax      = 33.0;
            double rowsummax         = 30.0;
            double sumofdiagonals    = 15;
            double sumofsquares      = 650;

            // Constructors and constructor-like methods:
            // double[], int
            // double[,]
            // int, int
            // int, int, double
            // int, int, double[,]
            // Create(double[,])
            // Random(int,int)
            // Identity(int)

            print("\nTesting constructors and constructor-like methods...\n");
            try
            {
                // check that exception is thrown in packed constructor with invalid length
                A          = new Matrix(columnwise, invalidld);
                errorCount = try_failure(errorCount, "Catch invalid length in packed constructor... ", "exception not thrown for invalid input");
            }
            catch (System.ArgumentException e)
            {
                try_success("Catch invalid length in packed constructor... ", e.Message);
            }

            A           = new Matrix(columnwise, validld);
            B           = new Matrix(avals);
            tmp         = B[0, 0];
            avals[0, 0] = 0.0;
            C           = B - A;
            avals[0, 0] = tmp;
            B           = Matrix.Create(avals);
            tmp         = B[0, 0];
            avals[0, 0] = 0.0;
            if ((tmp - B[0, 0]) != 0.0)
            {
                // check that Create behaves properly
                errorCount = try_failure(errorCount, "Create... ", "Copy not effected... data visible outside");
            }
            else
            {
                try_success("Create... ", "");
            }
            avals[0, 0] = columnwise[0];
            I           = new Matrix(ivals);
            try
            {
                check(I, Matrix.Identity(3, 4));
                try_success("Identity... ", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "Identity... ", "Identity Matrix not successfully created");
                System.Console.Out.WriteLine(e.Message);
            }

            // Access Methods:
            // getColumnDimension()
            // getRowDimension()
            // getArray()
            // getArrayCopy()
            // getColumnPackedCopy()
            // getRowPackedCopy()
            // get(int,int)
            // GetMatrix(int,int,int,int)
            // GetMatrix(int,int,int[])
            // GetMatrix(int[],int,int)
            // GetMatrix(int[],int[])
            // set(int,int,double)
            // SetMatrix(int,int,int,int,Matrix)
            // SetMatrix(int,int,int[],Matrix)
            // SetMatrix(int[],int,int,Matrix)
            // SetMatrix(int[],int[],Matrix)

            print("\nTesting access methods...\n");

            // Various get methods
            B = new Matrix(avals);
            if (B.RowCount != rows)
            {
                errorCount = try_failure(errorCount, "getRowDimension... ", "");
            }
            else
            {
                try_success("getRowDimension... ", "");
            }
            if (B.ColumnCount != cols)
            {
                errorCount = try_failure(errorCount, "getColumnDimension... ", "");
            }
            else
            {
                try_success("getColumnDimension... ", "");
            }
            B = new Matrix(avals);
            double[,] barray = (Matrix)B;
            if (barray != avals)
            {
                errorCount = try_failure(errorCount, "getArray... ", "");
            }
            else
            {
                try_success("getArray... ", "");
            }
            barray = (Matrix)B.Clone();
            if (barray == avals)
            {
                errorCount = try_failure(errorCount, "getArrayCopy... ", "data not (deep) copied");
            }
            try
            {
                check(barray, avals);
                try_success("getArrayCopy... ", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "getArrayCopy... ", "data not successfully (deep) copied");
                System.Console.Out.WriteLine(e.Message);
            }

//			double[] bpacked = B.ColumnPackedCopy;
//			try
//			{
//				check(bpacked, columnwise);
//				try_success("getColumnPackedCopy... ", "");
//			}
//			catch (System.SystemException e)
//			{
//				errorCount = try_failure(errorCount, "getColumnPackedCopy... ", "data not successfully (deep) copied by columns");
//				System.Console.Out.WriteLine(e.Message);
//			}
//			bpacked = B.RowPackedCopy;
//			try
//			{
//				check(bpacked, rowwise);
//				try_success("getRowPackedCopy... ", "");
//			}
//			catch (System.SystemException e)
//			{
//				errorCount = try_failure(errorCount, "getRowPackedCopy... ", "data not successfully (deep) copied by rows");
//				System.Console.Out.WriteLine(e.Message);
//			}
            try
            {
                tmp        = B[B.RowCount, B.ColumnCount - 1];
                errorCount = try_failure(errorCount, "get(int,int)... ", "OutOfBoundsException expected but not thrown");
            }
            catch (System.IndexOutOfRangeException e)
            {
                System.Console.Out.WriteLine(e.Message);
                try
                {
                    tmp        = B[B.RowCount - 1, B.ColumnCount];
                    errorCount = try_failure(errorCount, "get(int,int)... ", "OutOfBoundsException expected but not thrown");
                }
                catch (System.IndexOutOfRangeException e1)
                {
                    try_success("get(int,int)... OutofBoundsException... ", "");
                    System.Console.Out.WriteLine(e1.Message);
                }
            }
            catch (System.ArgumentException e1)
            {
                errorCount = try_failure(errorCount, "get(int,int)... ", "OutOfBoundsException expected but not thrown");
                System.Console.Out.WriteLine(e1.Message);
            }
            try
            {
                if (B[B.RowCount - 1, B.ColumnCount - 1] != avals[B.RowCount - 1, B.ColumnCount - 1])
                {
                    errorCount = try_failure(errorCount, "get(int,int)... ", "Matrix entry (i,j) not successfully retreived");
                }
                else
                {
                    try_success("get(int,int)... ", "");
                }
            }
            catch (System.IndexOutOfRangeException e)
            {
                errorCount = try_failure(errorCount, "get(int,int)... ", "Unexpected ArrayIndexOutOfBoundsException");
                System.Console.Out.WriteLine(e.Message);
            }
            SUB = new Matrix(subavals);
            try
            {
                M          = B.GetMatrix(ib, ie + B.RowCount + 1, jb, je);
                errorCount = try_failure(errorCount, "GetMatrix(int,int,int,int)... ", "ArrayIndexOutOfBoundsException expected but not thrown");
            }
            catch (System.IndexOutOfRangeException e)
            {
                System.Console.Out.WriteLine(e.Message);
                try
                {
                    M          = B.GetMatrix(ib, ie, jb, je + B.ColumnCount + 1);
                    errorCount = try_failure(errorCount, "GetMatrix(int,int,int,int)... ", "ArrayIndexOutOfBoundsException expected but not thrown");
                }
                catch (System.IndexOutOfRangeException e1)
                {
                    try_success("GetMatrix(int,int,int,int)... ArrayIndexOutOfBoundsException... ", "");
                    System.Console.Out.WriteLine(e1.Message);
                }
            }
            catch (System.ArgumentException e1)
            {
                errorCount = try_failure(errorCount, "GetMatrix(int,int,int,int)... ", "ArrayIndexOutOfBoundsException expected but not thrown");
                System.Console.Out.WriteLine(e1.Message);
            }
            try
            {
                M = B.GetMatrix(ib, ie, jb, je);
                try
                {
                    check(SUB, M);
                    try_success("GetMatrix(int,int,int,int)... ", "");
                }
                catch (System.SystemException e)
                {
                    errorCount = try_failure(errorCount, "GetMatrix(int,int,int,int)... ", "submatrix not successfully retreived");
                    System.Console.Out.WriteLine(e.Message);
                }
            }
            catch (System.IndexOutOfRangeException e)
            {
                errorCount = try_failure(errorCount, "GetMatrix(int,int,int,int)... ", "Unexpected ArrayIndexOutOfBoundsException");
                System.Console.Out.WriteLine(e.Message);
            }

            try
            {
                M          = B.GetMatrix(ib, ie, badcolumnindexset);
                errorCount = try_failure(errorCount, "GetMatrix(int,int,int[])... ", "ArrayIndexOutOfBoundsException expected but not thrown");
            }
            catch (System.IndexOutOfRangeException e)
            {
                System.Console.Out.WriteLine(e.Message);
                try
                {
                    M          = B.GetMatrix(ib, ie + B.RowCount + 1, columnindexset);
                    errorCount = try_failure(errorCount, "GetMatrix(int,int,int[])... ", "ArrayIndexOutOfBoundsException expected but not thrown");
                }
                catch (System.IndexOutOfRangeException e1)
                {
                    try_success("GetMatrix(int,int,int[])... ArrayIndexOutOfBoundsException... ", "");
                    System.Console.Out.WriteLine(e1.Message);
                }
            }
            catch (System.ArgumentException e1)
            {
                errorCount = try_failure(errorCount, "GetMatrix(int,int,int[])... ", "ArrayIndexOutOfBoundsException expected but not thrown");
                System.Console.Out.WriteLine(e1.Message);
            }
            try
            {
                M = B.GetMatrix(ib, ie, columnindexset);
                try
                {
                    check(SUB, M);
                    try_success("GetMatrix(int,int,int[])... ", "");
                }
                catch (System.SystemException e)
                {
                    errorCount = try_failure(errorCount, "GetMatrix(int,int,int[])... ", "submatrix not successfully retreived");
                    System.Console.Out.WriteLine(e.Message);
                }
            }
            catch (System.IndexOutOfRangeException e)
            {
                errorCount = try_failure(errorCount, "GetMatrix(int,int,int[])... ", "Unexpected ArrayIndexOutOfBoundsException");
                System.Console.Out.WriteLine(e.Message);
            }
            try
            {
                M          = B.GetMatrix(badrowindexset, jb, je);
                errorCount = try_failure(errorCount, "GetMatrix(int[],int,int)... ", "ArrayIndexOutOfBoundsException expected but not thrown");
            }
            catch (System.IndexOutOfRangeException e)
            {
                System.Console.Out.WriteLine(e.Message);
                try
                {
                    M          = B.GetMatrix(rowindexset, jb, je + B.ColumnCount + 1);
                    errorCount = try_failure(errorCount, "GetMatrix(int[],int,int)... ", "ArrayIndexOutOfBoundsException expected but not thrown");
                }
                catch (System.IndexOutOfRangeException e1)
                {
                    try_success("GetMatrix(int[],int,int)... ArrayIndexOutOfBoundsException... ", "");
                    System.Console.Out.WriteLine(e1.Message);
                }
            }
            catch (System.ArgumentException e1)
            {
                errorCount = try_failure(errorCount, "GetMatrix(int[],int,int)... ", "ArrayIndexOutOfBoundsException expected but not thrown");
                System.Console.Out.WriteLine(e1.Message);
            }
            try
            {
                M = B.GetMatrix(rowindexset, jb, je);
                try
                {
                    check(SUB, M);
                    try_success("GetMatrix(int[],int,int)... ", "");
                }
                catch (System.SystemException e)
                {
                    errorCount = try_failure(errorCount, "GetMatrix(int[],int,int)... ", "submatrix not successfully retreived");
                    System.Console.Out.WriteLine(e.Message);
                }
            }
            catch (System.IndexOutOfRangeException e)
            {
                errorCount = try_failure(errorCount, "GetMatrix(int[],int,int)... ", "Unexpected ArrayIndexOutOfBoundsException");
                System.Console.Out.WriteLine(e.Message);
            }
            try
            {
                M          = B.GetMatrix(badrowindexset, columnindexset);
                errorCount = try_failure(errorCount, "GetMatrix(int[],int[])... ", "ArrayIndexOutOfBoundsException expected but not thrown");
            }
            catch (System.IndexOutOfRangeException e)
            {
                System.Console.Out.WriteLine(e.Message);
                try
                {
                    M          = B.GetMatrix(rowindexset, badcolumnindexset);
                    errorCount = try_failure(errorCount, "GetMatrix(int[],int[])... ", "ArrayIndexOutOfBoundsException expected but not thrown");
                }
                catch (System.IndexOutOfRangeException e1)
                {
                    try_success("GetMatrix(int[],int[])... ArrayIndexOutOfBoundsException... ", "");
                    System.Console.Out.WriteLine(e1.Message);
                }
            }
            catch (System.ArgumentException e1)
            {
                errorCount = try_failure(errorCount, "GetMatrix(int[],int[])... ", "ArrayIndexOutOfBoundsException expected but not thrown");
                System.Console.Out.WriteLine(e1.Message);
            }
            try
            {
                M = B.GetMatrix(rowindexset, columnindexset);
                try
                {
                    check(SUB, M);
                    try_success("GetMatrix(int[],int[])... ", "");
                }
                catch (System.SystemException e)
                {
                    errorCount = try_failure(errorCount, "GetMatrix(int[],int[])... ", "submatrix not successfully retreived");
                    System.Console.Out.WriteLine(e.Message);
                }
            }
            catch (System.IndexOutOfRangeException e)
            {
                errorCount = try_failure(errorCount, "GetMatrix(int[],int[])... ", "Unexpected ArrayIndexOutOfBoundsException");
                System.Console.Out.WriteLine(e.Message);
            }

            // Various set methods:
            try
            {
                B[B.RowCount, B.ColumnCount - 1] = 0.0;
                errorCount = try_failure(errorCount, "set(int,int,double)... ", "OutOfBoundsException expected but not thrown");
            }
            catch (System.IndexOutOfRangeException e)
            {
                System.Console.Out.WriteLine(e.Message);
                try
                {
                    B[B.RowCount - 1, B.ColumnCount] = 0.0;
                    errorCount = try_failure(errorCount, "set(int,int,double)... ", "OutOfBoundsException expected but not thrown");
                }
                catch (System.IndexOutOfRangeException e1)
                {
                    try_success("set(int,int,double)... OutofBoundsException... ", "");
                    System.Console.Out.WriteLine(e1.Message);
                }
            }
            catch (System.ArgumentException e1)
            {
                errorCount = try_failure(errorCount, "set(int,int,double)... ", "OutOfBoundsException expected but not thrown");
                System.Console.Out.WriteLine(e1.Message);
            }
            try
            {
                B[ib, jb] = 0.0;
                tmp       = B[ib, jb];
                try
                {
                    check(tmp, 0.0);
                    try_success("set(int,int,double)... ", "");
                }
                catch (System.SystemException e)
                {
                    errorCount = try_failure(errorCount, "set(int,int,double)... ", "Matrix element not successfully set");
                    System.Console.Out.WriteLine(e.Message);
                }
            }
            catch (System.IndexOutOfRangeException e1)
            {
                errorCount = try_failure(errorCount, "set(int,int,double)... ", "Unexpected ArrayIndexOutOfBoundsException");
                System.Console.Out.WriteLine(e1.Message);
            }
            M = new Matrix(2, 3, 0.0);
            try
            {
                B.SetMatrix(ib, ie + B.RowCount + 1, jb, je, M);
                errorCount = try_failure(errorCount, "SetMatrix(int,int,int,int,Matrix)... ", "ArrayIndexOutOfBoundsException expected but not thrown");
            }
            catch (System.IndexOutOfRangeException e)
            {
                System.Console.Out.WriteLine(e.Message);
                try
                {
                    B.SetMatrix(ib, ie, jb, je + B.ColumnCount + 1, M);
                    errorCount = try_failure(errorCount, "SetMatrix(int,int,int,int,Matrix)... ", "ArrayIndexOutOfBoundsException expected but not thrown");
                }
                catch (System.IndexOutOfRangeException e1)
                {
                    try_success("SetMatrix(int,int,int,int,Matrix)... ArrayIndexOutOfBoundsException... ", "");
                    System.Console.Out.WriteLine(e1.Message);
                }
            }
            catch (System.ArgumentException e1)
            {
                errorCount = try_failure(errorCount, "SetMatrix(int,int,int,int,Matrix)... ", "ArrayIndexOutOfBoundsException expected but not thrown");
                System.Console.Out.WriteLine(e1.Message);
            }
            try
            {
                B.SetMatrix(ib, ie, jb, je, M);
                try
                {
                    check(M - B.GetMatrix(ib, ie, jb, je), M);
                    try_success("SetMatrix(int,int,int,int,Matrix)... ", "");
                }
                catch (System.SystemException e)
                {
                    errorCount = try_failure(errorCount, "SetMatrix(int,int,int,int,Matrix)... ", "submatrix not successfully set");
                    System.Console.Out.WriteLine(e.Message);
                }
                B.SetMatrix(ib, ie, jb, je, SUB);
            }
            catch (System.IndexOutOfRangeException e1)
            {
                errorCount = try_failure(errorCount, "SetMatrix(int,int,int,int,Matrix)... ", "Unexpected ArrayIndexOutOfBoundsException");
                System.Console.Out.WriteLine(e1.Message);
            }
            try
            {
                B.SetMatrix(ib, ie + B.RowCount + 1, columnindexset, M);
                errorCount = try_failure(errorCount, "SetMatrix(int,int,int[],Matrix)... ", "ArrayIndexOutOfBoundsException expected but not thrown");
            }
            catch (System.IndexOutOfRangeException e)
            {
                System.Console.Out.WriteLine(e.Message);
                try
                {
                    B.SetMatrix(ib, ie, badcolumnindexset, M);
                    errorCount = try_failure(errorCount, "SetMatrix(int,int,int[],Matrix)... ", "ArrayIndexOutOfBoundsException expected but not thrown");
                }
                catch (System.IndexOutOfRangeException e1)
                {
                    try_success("SetMatrix(int,int,int[],Matrix)... ArrayIndexOutOfBoundsException... ", "");
                    System.Console.Out.WriteLine(e1.Message);
                }
            }
            catch (System.ArgumentException e1)
            {
                errorCount = try_failure(errorCount, "SetMatrix(int,int,int[],Matrix)... ", "ArrayIndexOutOfBoundsException expected but not thrown");
                System.Console.Out.WriteLine(e1.Message);
            }
            try
            {
                B.SetMatrix(ib, ie, columnindexset, M);
                try
                {
                    check(M - B.GetMatrix(ib, ie, columnindexset), M);
                    try_success("SetMatrix(int,int,int[],Matrix)... ", "");
                }
                catch (System.SystemException e)
                {
                    errorCount = try_failure(errorCount, "SetMatrix(int,int,int[],Matrix)... ", "submatrix not successfully set");
                    System.Console.Out.WriteLine(e.Message);
                }
                B.SetMatrix(ib, ie, jb, je, SUB);
            }
            catch (System.IndexOutOfRangeException e1)
            {
                errorCount = try_failure(errorCount, "SetMatrix(int,int,int[],Matrix)... ", "Unexpected ArrayIndexOutOfBoundsException");
                System.Console.Out.WriteLine(e1.Message);
            }
            try
            {
                B.SetMatrix(rowindexset, jb, je + B.ColumnCount + 1, M);
                errorCount = try_failure(errorCount, "SetMatrix(int[],int,int,Matrix)... ", "ArrayIndexOutOfBoundsException expected but not thrown");
            }
            catch (System.IndexOutOfRangeException e)
            {
                System.Console.Out.WriteLine(e.Message);
                try
                {
                    B.SetMatrix(badrowindexset, jb, je, M);
                    errorCount = try_failure(errorCount, "SetMatrix(int[],int,int,Matrix)... ", "ArrayIndexOutOfBoundsException expected but not thrown");
                }
                catch (System.IndexOutOfRangeException e1)
                {
                    try_success("SetMatrix(int[],int,int,Matrix)... ArrayIndexOutOfBoundsException... ", "");
                    System.Console.Out.WriteLine(e1.Message);
                }
            }
            catch (System.ArgumentException e1)
            {
                errorCount = try_failure(errorCount, "SetMatrix(int[],int,int,Matrix)... ", "ArrayIndexOutOfBoundsException expected but not thrown");
                System.Console.Out.WriteLine(e1.Message);
            }
            try
            {
                B.SetMatrix(rowindexset, jb, je, M);
                try
                {
                    check(M - B.GetMatrix(rowindexset, jb, je), M);
                    try_success("SetMatrix(int[],int,int,Matrix)... ", "");
                }
                catch (System.SystemException e)
                {
                    errorCount = try_failure(errorCount, "SetMatrix(int[],int,int,Matrix)... ", "submatrix not successfully set");
                    System.Console.Out.WriteLine(e.Message);
                }
                B.SetMatrix(ib, ie, jb, je, SUB);
            }
            catch (System.IndexOutOfRangeException e1)
            {
                errorCount = try_failure(errorCount, "SetMatrix(int[],int,int,Matrix)... ", "Unexpected ArrayIndexOutOfBoundsException");
                System.Console.Out.WriteLine(e1.Message);
            }
            try
            {
                B.SetMatrix(rowindexset, badcolumnindexset, M);
                errorCount = try_failure(errorCount, "SetMatrix(int[],int[],Matrix)... ", "ArrayIndexOutOfBoundsException expected but not thrown");
            }
            catch (System.IndexOutOfRangeException e)
            {
                System.Console.Out.WriteLine(e.Message);
                try
                {
                    B.SetMatrix(badrowindexset, columnindexset, M);
                    errorCount = try_failure(errorCount, "SetMatrix(int[],int[],Matrix)... ", "ArrayIndexOutOfBoundsException expected but not thrown");
                }
                catch (System.IndexOutOfRangeException e1)
                {
                    try_success("SetMatrix(int[],int[],Matrix)... ArrayIndexOutOfBoundsException... ", "");
                    System.Console.Out.WriteLine(e1.Message);
                }
            }
            catch (System.ArgumentException e1)
            {
                errorCount = try_failure(errorCount, "SetMatrix(int[],int[],Matrix)... ", "ArrayIndexOutOfBoundsException expected but not thrown");
                System.Console.Out.WriteLine(e1.Message);
            }
            try
            {
                B.SetMatrix(rowindexset, columnindexset, M);
                try
                {
                    check(M - B.GetMatrix(rowindexset, columnindexset), M);
                    try_success("SetMatrix(int[],int[],Matrix)... ", "");
                }
                catch (System.SystemException e)
                {
                    errorCount = try_failure(errorCount, "SetMatrix(int[],int[],Matrix)... ", "submatrix not successfully set");
                    System.Console.Out.WriteLine(e.Message);
                }
            }
            catch (System.IndexOutOfRangeException e1)
            {
                errorCount = try_failure(errorCount, "SetMatrix(int[],int[],Matrix)... ", "Unexpected ArrayIndexOutOfBoundsException");
                System.Console.Out.WriteLine(e1.Message);
            }

            // Array-like methods:
            // Subtract
            // SubtractEquals
            // Add
            // AddEquals
            // ArrayLeftDivide
            // ArrayLeftDivideEquals
            // ArrayRightDivide
            // ArrayRightDivideEquals
            // arrayTimes
            // ArrayMultiplyEquals
            // uminus

            print("\nTesting array-like methods...\n");
            S = new Matrix(columnwise, nonconformld);
            R = Matrix.Random(A.RowCount, A.ColumnCount);
            A = R;
            try
            {
                S          = A - S;
                errorCount = try_failure(errorCount, "Subtract conformance check... ", "nonconformance not raised");
            }
            catch (System.ArgumentException e)
            {
                try_success("Subtract conformance check... ", "");
                System.Console.Out.WriteLine(e.Message);
            }
            if ((A - R).Norm1() != 0.0)
            {
                errorCount = try_failure(errorCount, "Subtract... ", "(difference of identical Matrices is nonzero,\nSubsequent use of Subtract should be suspect)");
            }
            else
            {
                try_success("Subtract... ", "");
            }
            A = (Matrix)R.Clone();
            A.Subtract(R);
            Z = new Matrix(A.RowCount, A.ColumnCount);
            try
            {
                A.Subtract(S);
                errorCount = try_failure(errorCount, "SubtractEquals conformance check... ", "nonconformance not raised");
            }
            catch (System.ArgumentException e)
            {
                try_success("SubtractEquals conformance check... ", "");
                System.Console.Out.WriteLine(e.Message);
            }
            if ((A - Z).Norm1() != 0.0)
            {
                errorCount = try_failure(errorCount, "SubtractEquals... ", "(difference of identical Matrices is nonzero,\nSubsequent use of Subtract should be suspect)");
            }
            else
            {
                try_success("SubtractEquals... ", "");
            }

            A = (Matrix)R.Clone();
            B = Matrix.Random(A.RowCount, A.ColumnCount);
            C = A - B;
            try
            {
                S          = A + S;
                errorCount = try_failure(errorCount, "Add conformance check... ", "nonconformance not raised");
            }
            catch (System.ArgumentException e)
            {
                try_success("Add conformance check... ", "");
                System.Console.Out.WriteLine(e.Message);
            }
            try
            {
                check(C + B, A);
                try_success("Add... ", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "Add... ", "(C = A - B, but C + B != A)");
                System.Console.Out.WriteLine(e.Message);
            }
            C = A - B;
            C.Add(B);
            try
            {
                A.Add(S);
                errorCount = try_failure(errorCount, "AddEquals conformance check... ", "nonconformance not raised");
            }
            catch (System.ArgumentException e)
            {
                try_success("AddEquals conformance check... ", "");
                System.Console.Out.WriteLine(e.Message);
            }
            try
            {
                check(C, A);
                try_success("AddEquals... ", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "AddEquals... ", "(C = A - B, but C = C + B != A)");
                System.Console.Out.WriteLine(e.Message);
            }
            A = ((Matrix)R.Clone());
            A.UnaryMinus();
            try
            {
                check(A + R, Z);
                try_success("UnaryMinus... ", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "uminus... ", "(-A + A != zeros)");
                System.Console.Out.WriteLine(e.Message);
            }
            A = (Matrix)R.Clone();
            O = new Matrix(A.RowCount, A.ColumnCount, 1.0);
            try
            {
                Matrix.ArrayDivide(A, S);
                errorCount = try_failure(errorCount, "ArrayRightDivide conformance check... ", "nonconformance not raised");
            }
            catch (System.ArgumentException e)
            {
                try_success("ArrayRightDivide conformance check... ", "");
                System.Console.Out.WriteLine(e.Message);
            }
            C = Matrix.ArrayDivide(A, R);
            try
            {
                check(C, O);
                try_success("ArrayRightDivide... ", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "ArrayRightDivide... ", "(M./M != ones)");
                System.Console.Out.WriteLine(e.Message);
            }
            try
            {
                A.ArrayDivide(S);
                errorCount = try_failure(errorCount, "ArrayRightDivideEquals conformance check... ", "nonconformance not raised");
            }
            catch (System.ArgumentException e)
            {
                try_success("ArrayRightDivideEquals conformance check... ", "");
                System.Console.Out.WriteLine(e.Message);
            }
            A.ArrayDivide(R);
            try
            {
                check(A, O);
                try_success("ArrayRightDivideEquals... ", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "ArrayRightDivideEquals... ", "(M./M != ones)");
                System.Console.Out.WriteLine(e.Message);
            }
            A = (Matrix)R.Clone();
            B = Matrix.Random(A.RowCount, A.ColumnCount);
            try
            {
                S          = Matrix.ArrayMultiply(A, S);
                errorCount = try_failure(errorCount, "arrayTimes conformance check... ", "nonconformance not raised");
            }
            catch (System.ArgumentException e)
            {
                try_success("arrayTimes conformance check... ", "");
                System.Console.Out.WriteLine(e.Message);
            }
            C = Matrix.ArrayMultiply(A, B);
            try
            {
                C.ArrayDivide(B);
                check(C, A);
                try_success("arrayTimes... ", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "arrayTimes... ", "(A = R, C = A.*B, but C./B != A)");
                System.Console.Out.WriteLine(e.Message);
            }
            try
            {
                A.ArrayMultiply(S);
                errorCount = try_failure(errorCount, "ArrayMultiplyEquals conformance check... ", "nonconformance not raised");
            }
            catch (System.ArgumentException e)
            {
                try_success("ArrayMultiplyEquals conformance check... ", "");
                System.Console.Out.WriteLine(e.Message);
            }
            A.ArrayMultiply(B);
            try
            {
                A.ArrayDivide(B);
                check(A, R);
                try_success("ArrayMultiplyEquals... ", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "ArrayMultiplyEquals... ", "(A = R, A = A.*B, but A./B != R)");
                System.Console.Out.WriteLine(e.Message);
            }

            // LA methods:
            // Transpose
            // Multiply
            // Condition
            // Rank
            // Determinant
            // trace
            // Norm1
            // norm2
            // normF
            // normInf
            // Solve
            // solveTranspose
            // Inverse
            // chol
            // Eigen
            // lu
            // qr
            // svd

            print("\nTesting linear algebra methods...\n");
            A = new Matrix(columnwise, 3);
            T = new Matrix(tvals);
            T = Matrix.Transpose(A);
            try
            {
                check(Matrix.Transpose(A), T);
                try_success("Transpose...", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "Transpose()...", "Transpose unsuccessful");
                System.Console.Out.WriteLine(e.Message);
            }
            Matrix.Transpose(A);
            try
            {
                check(A.Norm1(), columnsummax);
                try_success("Norm1...", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "Norm1()...", "incorrect norm calculation");
                System.Console.Out.WriteLine(e.Message);
            }
            try
            {
                check(A.NormInf(), rowsummax);
                try_success("normInf()...", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "normInf()...", "incorrect norm calculation");
                System.Console.Out.WriteLine(e.Message);
            }
            try
            {
                check(A.NormF(), System.Math.Sqrt(sumofsquares));
                try_success("normF...", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "normF()...", "incorrect norm calculation");
                System.Console.Out.WriteLine(e.Message);
            }
            try
            {
                check(A.Trace(), sumofdiagonals);
                try_success("trace()...", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "trace()...", "incorrect trace calculation");
                System.Console.Out.WriteLine(e.Message);
            }
            try
            {
                check(A.GetMatrix(0, A.RowCount - 1, 0, A.RowCount - 1).Determinant(), 0.0);
                try_success("Determinant()...", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "Determinant()...", "incorrect determinant calculation");
                System.Console.Out.WriteLine(e.Message);
            }
            SQ = new Matrix(square);
            try
            {
                check(A * Matrix.Transpose(A), SQ);
                try_success("Multiply(Matrix)...", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "Multiply(Matrix)...", "incorrect Matrix-Matrix product calculation");
                System.Console.Out.WriteLine(e.Message);
            }
            try
            {
                check(0.0 * A, Z);
                try_success("Multiply(double)...", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "Multiply(double)...", "incorrect Matrix-scalar product calculation");
                System.Console.Out.WriteLine(e.Message);
            }

            A = new Matrix(columnwise, 4);
            QRDecomposition QR = A.QRD();

            R = QR.R;
            try
            {
                check(A, QR.Q * R);
                try_success("QRDecomposition...", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "QRDecomposition...", "incorrect QR decomposition calculation");
                System.Console.Out.WriteLine(e.Message);
            }
            SingularValueDecomposition SVD = A.SVD();

            try
            {
                check(A, SVD.LeftSingularVectors * (SVD.S * Matrix.Transpose(SVD.RightSingularVectors)));
                try_success("SingularValueDecomposition...", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "SingularValueDecomposition...", "incorrect singular value decomposition calculation");
                System.Console.Out.WriteLine(e.Message);
            }
            DEF = new Matrix(rankdef);
            try
            {
                check(DEF.Rank(), System.Math.Min(DEF.RowCount, DEF.ColumnCount) - 1);
                try_success("Rank()...", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "Rank()...", "incorrect Rank calculation");
                System.Console.Out.WriteLine(e.Message);
            }
            B   = new Matrix(condmat);
            SVD = B.SVD();
            double[] singularvalues = SVD.SingularValues;
            try
            {
                check(B.Condition(), singularvalues[0] / singularvalues[System.Math.Min(B.RowCount, B.ColumnCount) - 1]);
                try_success("Condition()...", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "Condition()...", "incorrect condition number calculation");
                System.Console.Out.WriteLine(e.Message);
            }
            int n = A.ColumnCount;

            A       = A.GetMatrix(0, n - 1, 0, n - 1);
            A[0, 0] = 0.0;
            LUDecomposition LU = A.LUD();

            try
            {
                check(A.GetMatrix(LU.Pivot, 0, n - 1), LU.L * LU.U);
                try_success("LUDecomposition...", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "LUDecomposition...", "incorrect LU decomposition calculation");
                System.Console.Out.WriteLine(e.Message);
            }
            X = A.Inverse();
            try
            {
                check(A * X, Matrix.Identity(3, 3));
                try_success("Inverse()...", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "Inverse()...", "incorrect Inverse calculation");
                System.Console.Out.WriteLine(e.Message);
            }
            O   = new Matrix(SUB.RowCount, 1, 1.0);
            SOL = new Matrix(sqSolution);
            SQ  = SUB.GetMatrix(0, SUB.RowCount - 1, 0, SUB.RowCount - 1);
            try
            {
                check(SQ.Solve(SOL), O);
                try_success("Solve()...", "");
            }
            catch (System.ArgumentException e1)
            {
                errorCount = try_failure(errorCount, "Solve()...", e1.Message);
                System.Console.Out.WriteLine(e1.Message);
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "Solve()...", e.Message);
                System.Console.Out.WriteLine(e.Message);
            }
            A = new Matrix(pvals);
            CholeskyDecomposition Chol = A.chol();
            Matrix L = Chol.GetL();

            try
            {
                check(A, L * Matrix.Transpose(L));
                try_success("CholeskyDecomposition...", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "CholeskyDecomposition...", "incorrect Cholesky decomposition calculation");
                System.Console.Out.WriteLine(e.Message);
            }
            X = Chol.Solve(Matrix.Identity(3, 3));
            try
            {
                check(A * X, Matrix.Identity(3, 3));
                try_success("CholeskyDecomposition Solve()...", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "CholeskyDecomposition Solve()...", "incorrect Choleskydecomposition Solve calculation");
                System.Console.Out.WriteLine(e.Message);
            }
            EigenvalueDecomposition Eig = A.Eigen();
            Matrix D = Eig.BlockDiagonal;
            Matrix V = Eig.EigenVectors;

            try
            {
                check(A * V, V * D);
                try_success("EigenvalueDecomposition (symmetric)...", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "EigenvalueDecomposition (symmetric)...", "incorrect symmetric Eigenvalue decomposition calculation");
                System.Console.Out.WriteLine(e.Message);
            }
            A   = new Matrix(evals);
            Eig = A.Eigen();
            D   = Eig.BlockDiagonal;
            V   = Eig.EigenVectors;
            try
            {
                check(A * V, V * D);
                try_success("EigenvalueDecomposition (nonsymmetric)...", "");
            }
            catch (System.SystemException e)
            {
                errorCount = try_failure(errorCount, "EigenvalueDecomposition (nonsymmetric)...", "incorrect nonsymmetric Eigenvalue decomposition calculation");
                System.Console.Out.WriteLine(e.Message);
            }

            print("\nTestMatrix completed.\n");
            print("Total errors reported: " + System.Convert.ToString(errorCount) + "\n");
            print("Total warnings reported: " + System.Convert.ToString(warningCount) + "\n");

            if (errorCount > 0)
            {
                throw new Exception("Errors reported.");
            }
        }
Esempio n. 18
0
        public void Simple()
        {
            var matrixA = new Matrix(5, 5);

            //      // [ 2,  1,  1,  3,  2 ]
            //      // [ 1,  2,  2,  1,  1 ]
            //      // [ 1,  2,  9,  1,  5 ]
            //      // [ 3,  1,  1,  7,  1 ]
            //      // [ 2,  1,  5,  1,  8 ]

            matrixA[0, 0] = 2;
            matrixA[0, 1] = 1;
            matrixA[0, 2] = 1;
            matrixA[0, 3] = 3;
            matrixA[0, 4] = 2;

            matrixA[1, 0] = 1;
            matrixA[1, 1] = 2;
            matrixA[1, 2] = 2;
            matrixA[1, 3] = 1;
            matrixA[1, 4] = 1;

            matrixA[2, 0] = 1;
            matrixA[2, 1] = 2;
            matrixA[2, 2] = 9;
            matrixA[2, 3] = 1;
            matrixA[2, 4] = 5;

            matrixA[3, 0] = 3;
            matrixA[3, 1] = 1;
            matrixA[3, 2] = 1;
            matrixA[3, 3] = 7;
            matrixA[3, 4] = 1;

            matrixA[4, 0] = 2;
            matrixA[4, 1] = 1;
            matrixA[4, 2] = 5;
            matrixA[4, 3] = 1;
            matrixA[4, 4] = 8;

            var matrixB = new Matrix(5, 1);

            matrixB[0, 0] = -2;
            matrixB[1, 0] = 4;
            matrixB[2, 0] = 3;
            matrixB[3, 0] = -5;
            matrixB[4, 0] = 1;


            var decomposition = new CholeskyDecomposition(matrixA);

            var solveMatrix = decomposition.Solve(matrixB);


            Assert.AreEqual(solveMatrix.Rows, 5);
            Assert.AreEqual(solveMatrix.Columns, 1);

            Assert.IsTrue(solveMatrix[0, 0].IsSimilarTo(-629.0 / 98.0));
            Assert.IsTrue(solveMatrix[1, 0].IsSimilarTo(237.0 / 49.0));
            Assert.IsTrue(solveMatrix[2, 0].IsSimilarTo(-53.0 / 49.0));
            Assert.IsTrue(solveMatrix[3, 0].IsSimilarTo(62.0 / 49.0));
            Assert.IsTrue(solveMatrix[4, 0].IsSimilarTo(23.0 / 14.0));
        }
Esempio n. 19
0
        public static void test_Matrices()
        {
            int N = 200;
            //int N = 2500;
            DenseMatrix           M1 = new DenseMatrix(N, N);
            SymmetricSparseMatrix M2 = new SymmetricSparseMatrix();

            for (int i = 0; i < N; ++i)
            {
                for (int j = i; j < N; ++j)
                {
                    if (i == j)
                    {
                        M1.Set(i, i, N);
                        M2.Set(i, i, N);
                    }
                    else if (j % 2 != 0)
                    {
                        double d = 1.0 / Math.Sqrt(i + j);
                        M1.Set(i, j, d);
                        M1.Set(j, i, d);
                        M2.Set(i, j, d);
                    }
                }
            }


            double[] X = new double[N], b1 = new double[N], b2 = new double[N];
            for (int i = 0; i < N; ++i)
            {
                X[i] = (double)i / (double)N;
            }

            M1.Multiply(X, b1);
            M2.Multiply(X, b2);

            for (int i = 0; i < N; ++i)
            {
                Debug.Assert(MathUtil.EpsilonEqual(b1[i], b2[i]));
            }

            Debug.Assert(M1.IsSymmetric());
            Debug.Assert(M1.IsPositiveDefinite());

            // test parallel cholesky decomposition

            LocalProfiler p = new LocalProfiler();

            p.Start("chol");
            CholeskyDecomposition decompM = new CholeskyDecomposition(M1);

            decompM.ComputeParallel();
            p.Stop("chol");
            //System.Console.WriteLine(p.AllTimes());

            DenseMatrix LLT_M1 = decompM.L.Multiply(decompM.L.Transpose());

            if (LLT_M1.EpsilonEquals(M1) == false)
            {
                System.Console.WriteLine("FAIL  choleskyM1 did not reproduce input");
            }

            // test cholesky-decomp backsubstitution

            Random r = new Random(31337);

            double[] RealX = TestUtil.RandomScalars(N, r, new Interval1d(-10, 10));
            double[] B     = new double[N], SolvedX = new double[N], TmpY = new double[N];
            M1.Multiply(RealX, B);
            decompM.Solve(B, SolvedX, TmpY);
            if (BufferUtil.DistanceSquared(RealX, SolvedX) > MathUtil.ZeroTolerance)
            {
                System.Console.WriteLine("FAIL choleskyM1 backsubstution did not reproduce input vector");
            }


            // test case from: https://people.cs.kuleuven.be/~karl.meerbergen/didactiek/h03g1a/ilu.pdf
            //DenseMatrix tmp = new DenseMatrix(6, 6);
            //tmp.Set(new double[] {
            //    3,0,-1,-1,0,-1,
            //    0,2,0,-1,0,0,
            //    -1,0,3,0,-1,0,
            //    -1,-1,0,2,0,-1,
            //    0,0,-1,0,3,-1,
            //    -1,0,0,-1,-1,4});
            //CholeskyDecomposition decompDense = new CholeskyDecomposition(tmp);
            //decompDense.Compute();
            //PackedSparseMatrix M1_sparse = PackedSparseMatrix.FromDense(tmp, true);
            //M1_sparse.Sort();
            //SparseCholeskyDecomposition decompM1_sparse = new SparseCholeskyDecomposition(M1_sparse);
            //decompM1_sparse.ComputeIncomplete();


            // cholesky decomposition known-result test
            DenseMatrix MSym3x3 = new DenseMatrix(3, 3);

            MSym3x3.Set(new double[] { 25, 15, -5, 15, 18, 0, -5, 0, 11 });
            DenseMatrix MSym3x3_Chol = new DenseMatrix(3, 3);

            MSym3x3_Chol.Set(new double[] { 5, 0, 0, 3, 3, 0, -1, 1, 3 });
            CholeskyDecomposition decomp3x3 = new CholeskyDecomposition(MSym3x3);

            decomp3x3.Compute();
            if (decomp3x3.L.EpsilonEquals(MSym3x3_Chol) == false)
            {
                System.Console.WriteLine("FAIL  cholesky3x3 incorrect result");
            }
            if (decomp3x3.L.Multiply(decomp3x3.L.Transpose()).EpsilonEquals(MSym3x3) == false)
            {
                System.Console.WriteLine("FAIL  cholesky3x3 did not reproduce input");
            }

            // cholesky decomposition known-result test
            DenseMatrix MSym4x4 = new DenseMatrix(4, 4);

            MSym4x4.Set(new double[] {
                18, 22, 54, 42, 22, 70, 86, 62,
                54, 86, 174, 134, 42, 62, 134, 106
            });
            DenseMatrix MSym4x4_Chol = new DenseMatrix(4, 4);

            MSym4x4_Chol.Set(new double[] {
                4.24264, 0, 0, 0, 5.18545, 6.56591, 0, 0,
                12.72792, 3.04604, 1.64974, 0, 9.89949, 1.62455, 1.84971, 1.39262
            });
            CholeskyDecomposition decomp4x4 = new CholeskyDecomposition(MSym4x4);

            decomp4x4.Compute();
            if (decomp4x4.L.EpsilonEquals(MSym4x4_Chol, 0.0001) == false)
            {
                System.Console.WriteLine("FAIL  cholesky4x4 incorrect result");
            }
            if (decomp4x4.L.Multiply(decomp4x4.L.Transpose()).EpsilonEquals(MSym4x4) == false)
            {
                System.Console.WriteLine("FAIL  cholesky4x4 did not reproduce input");
            }
        }
Esempio n. 20
0
        // the internal linear regression routine, which assumes inputs are entirely valid

        private FitResult LinearRegression_Internal(int outputIndex)
        {
            // to do a fit, we need more data than parameters
            if (Count < Dimension)
            {
                throw new InsufficientDataException();
            }

            // construct the design matrix
            SymmetricMatrix D = new SymmetricMatrix(Dimension);

            for (int i = 0; i < Dimension; i++)
            {
                for (int j = 0; j <= i; j++)
                {
                    if (i == outputIndex)
                    {
                        if (j == outputIndex)
                        {
                            D[i, j] = Count;
                        }
                        else
                        {
                            D[i, j] = storage[j].Mean * Count;
                        }
                    }
                    else
                    {
                        if (j == outputIndex)
                        {
                            D[i, j] = storage[i].Mean * Count;
                        }
                        else
                        {
                            double Dij = 0.0;
                            for (int k = 0; k < Count; k++)
                            {
                                Dij += storage[i][k] * storage[j][k];
                            }
                            D[i, j] = Dij;
                        }
                    }
                }
            }

            // construct the right hand side
            ColumnVector b = new ColumnVector(Dimension);

            for (int i = 0; i < Dimension; i++)
            {
                if (i == outputIndex)
                {
                    b[i] = storage[i].Mean * Count;
                }
                else
                {
                    double bi = 0.0;
                    for (int k = 0; k < Count; k++)
                    {
                        bi += storage[outputIndex][k] * storage[i][k];
                    }
                    b[i] = bi;
                }
            }

            // solve the system for the linear model parameters
            CholeskyDecomposition CD         = D.CholeskyDecomposition();
            ColumnVector          parameters = CD.Solve(b);

            // find total sum of squares, with dof = # points - 1 (minus one for the variance-minimizing mean)
            double totalSumOfSquares = storage[outputIndex].Variance * Count;

            // find remaining unexplained sum of squares, with dof = # points - # parameters
            double unexplainedSumOfSquares = 0.0;

            for (int r = 0; r < Count; r++)
            {
                double y = 0.0;
                for (int c = 0; c < Dimension; c++)
                {
                    if (c == outputIndex)
                    {
                        y += parameters[c];
                    }
                    else
                    {
                        y += parameters[c] * storage[c][r];
                    }
                }
                unexplainedSumOfSquares += MoreMath.Sqr(y - storage[outputIndex][r]);
            }
            int    unexplainedDegreesOfFreedom = Count - Dimension;
            double unexplainedVariance         = unexplainedSumOfSquares / unexplainedDegreesOfFreedom;

            // find explained sum of squares, with dof = # parameters - 1
            double explainedSumOfSquares     = totalSumOfSquares - unexplainedSumOfSquares;
            int    explainedDegreesOfFreedom = Dimension - 1;
            double explainedVariance         = explainedSumOfSquares / explainedDegreesOfFreedom;

            // compute F statistic from sums of squares
            double       F             = explainedVariance / unexplainedVariance;
            Distribution fDistribution = new FisherDistribution(explainedDegreesOfFreedom, unexplainedDegreesOfFreedom);

            SymmetricMatrix covariance = unexplainedVariance * CD.Inverse();

            return(new FitResult(parameters, covariance, new TestResult("F", F, TestType.RightTailed, fDistribution)));
        }