Esempio n. 1
0
        public void PrimesGeneratorTestMethod()
        {
            var pluginInstance = TestHelpers.GetPluginInstance("PrimesGenerator");
            var scenario       = new PluginTestScenario(pluginInstance, new[] { "n", ".Mode" }, new[] { "OutputString" });

            foreach (TestVector vector in testvectors)
            {
                if (vector.mode <= 2)
                {
                    for (int i = 0; i < vector.count; i++)
                    {
                        object[] output = scenario.GetOutputs(new object[] { vector.input, vector.mode });
                        Assert.IsTrue(BigIntegerHelper.IsProbablePrime((BigInteger)output[0]), (BigInteger)output[0] + " is not a prime number in test #" + vector.n + ".");
                    }
                }
                else
                {
                    object[] output = scenario.GetOutputs(new object[] { vector.input, vector.mode });
                    Assert.AreEqual(vector.output, output[0], "Unexpected value in test #" + vector.n + ".");
                }
            }
        }
Esempio n. 2
0
        private void DoCalculateGoldbach(object o)
        {
            if (o == null || o.GetType() != typeof(PrimesBigInteger))
            {
                return;
            }

            PrimesBigInteger value = o as PrimesBigInteger;

            if (value.Mod(PrimesBigInteger.Two).Equals(PrimesBigInteger.One)) // value is odd
            {
                ControlHandler.SetPropertyValue(lblGoldbachInfoCalc, "Text", string.Format(Distribution.numberline_isodd, value));
                ControlHandler.SetPropertyValue(gbGoldbach, "Visibility", Visibility.Collapsed);
            }
            else if (value.Equals(PrimesBigInteger.Two))  // value = 2
            {
                ControlHandler.SetPropertyValue(lblGoldbachInfoCalc, "Text", Distribution.numberline_istwo);
                ControlHandler.SetPropertyValue(gbGoldbach, "Visibility", Visibility.Collapsed);
            }
            else // value is even and not prime
            {
                int counter  = 0;
                int maxlines = 1000;

                if (!value.IsProbablePrime(10))
                {
                    long x    = value.LongValue;
                    int  i    = 0;
                    long sum1 = PrimeNumbers.primes[i];
                    while (sum1 <= x / 2)
                    {
                        long sum2 = x - sum1;
                        if (BigIntegerHelper.IsProbablePrime(sum2))
                        //if (PrimeNumbers.isprime.Contains(sum2))
                        {
                            counter++;

                            if (counter < maxlines)
                            {
                                logGoldbach.Info(string.Format("{0} + {1}   ", sum1, sum2));
                            }
                            else if (counter == maxlines)
                            {
                                logGoldbach.Info(string.Format(Distribution.numberline_goldbachmaxlines, maxlines));
                            }

                            if (counter % 50 == 0)
                            {
                                string fmt = (counter == 1) ? Distribution.numberline_goldbachfoundsum : Distribution.numberline_goldbachfoundsums;
                                ControlHandler.SetPropertyValue(lblGoldbachInfoCalc, "Text", string.Format(fmt, counter, value));
                            }
                        }
                        sum1 = (++i < PrimeNumbers.primes.Length) ? PrimeNumbers.primes[i] : (long)BigIntegerHelper.NextProbablePrime(sum1 + 1);
                    }

                    string fmt1 = (counter == 1) ? Distribution.numberline_goldbachfoundsum : Distribution.numberline_goldbachfoundsums;
                    ControlHandler.SetPropertyValue(lblGoldbachInfoCalc, "Text", string.Format(fmt1, counter, value));
                    ControlHandler.SetPropertyValue(gbGoldbach, "Visibility", goldbachIsOpen ? Visibility.Visible : Visibility.Collapsed);
                }
            }

            if (GoldbachDone != null)
            {
                GoldbachDone();
            }
        }
Esempio n. 3
0
        /// <summary>
        /// Called by the environment to start generating of public/private keys
        /// </summary>
        public void Execute()
        {
            BigInteger p;
            BigInteger q;
            BigInteger n;
            BigInteger e;
            BigInteger d;

            ProgressChanged(0.0, 1.0);

            switch (settings.Source)
            {
            // manual
            case 0:
                try
                {
                    p = BigIntegerHelper.ParseExpression(settings.P);
                    q = BigIntegerHelper.ParseExpression(settings.Q);
                    e = BigIntegerHelper.ParseExpression(settings.E);

                    if (!BigIntegerHelper.IsProbablePrime(p))
                    {
                        GuiLogMessage(p.ToString() + " is not prime!", NotificationLevel.Error);
                        return;
                    }
                    if (!BigIntegerHelper.IsProbablePrime(q))
                    {
                        GuiLogMessage(q.ToString() + " is not prime!", NotificationLevel.Error);
                        return;
                    }
                    if (p == q)
                    {
                        GuiLogMessage("The primes P and Q can not be equal!", NotificationLevel.Error);
                        return;
                    }
                }
                catch (Exception ex)
                {
                    GuiLogMessage("Invalid Big Number input: " + ex.Message, NotificationLevel.Error);
                    return;
                }

                try
                {
                    D = BigIntegerHelper.ModInverse(e, (p - 1) * (q - 1));
                }
                catch (Exception)
                {
                    GuiLogMessage("RSAKeyGenerator Error: E (" + e + ") can not be inverted.", NotificationLevel.Error);
                    return;
                }

                try
                {
                    N = p * q;
                    E = e;
                }
                catch (Exception ex)
                {
                    GuiLogMessage("Big Number fail: " + ex.Message, NotificationLevel.Error);
                    return;
                }
                break;

            case 1:
                try
                {
                    n = BigIntegerHelper.ParseExpression(settings.N);
                    d = BigIntegerHelper.ParseExpression(settings.D);
                    e = BigIntegerHelper.ParseExpression(settings.E);
                }
                catch (Exception ex)
                {
                    GuiLogMessage("Invalid Big Number input: " + ex.Message, NotificationLevel.Error);
                    return;
                }

                try
                {
                    N = n;
                    E = e;
                    D = d;
                }
                catch (Exception ex)
                {
                    GuiLogMessage("Big Number fail: " + ex.Message, NotificationLevel.Error);
                    return;
                }
                break;

            //randomly generated
            case 2:
                try
                {
                    n = BigInteger.Parse(this.settings.Range);

                    switch (this.settings.RangeType)
                    {
                    case 0:         // n = number of bits for primes
                        if ((int)n <= 2)
                        {
                            GuiLogMessage("Value for n has to be greater than 2.", NotificationLevel.Error);
                            return;
                        }

                        if (n >= 1024)
                        {
                            GuiLogMessage("Please note that the generation of prime numbers with " + n + " bits may take some time...", NotificationLevel.Warning);
                        }

                        // calculate the number of expected tries for the indeterministic prime number generation using the density of primes in the given region
                        BigInteger limit = ((BigInteger)1) << (int)n;
                        limittries    = (int)(BigInteger.Log(limit) / 6);
                        expectedtries = 2 * limittries;

                        tries = 0;
                        p     = this.RandomPrimeBits((int)n);
                        tries = limittries;  limittries = expectedtries;
                        do
                        {
                            q = this.RandomPrimeBits((int)n);
                        } while (p == q);
                        break;

                    case 1:         // n = upper limit for primes
                    default:
                        if (n <= 4)
                        {
                            GuiLogMessage("Value for n has to be greater than 4", NotificationLevel.Error);
                            return;
                        }

                        p = BigIntegerHelper.RandomPrimeLimit(n + 1);
                        ProgressChanged(0.5, 1.0);
                        do
                        {
                            q = BigIntegerHelper.RandomPrimeLimit(n + 1);
                        } while (p == q);
                        break;
                    }
                }
                catch
                {
                    GuiLogMessage("Please enter an integer value for n.", NotificationLevel.Error);
                    return;
                }

                BigInteger phi = (p - 1) * (q - 1);

                // generate E for the given values of p and q
                bool found = false;
                foreach (var ee in new BigInteger[] { 3, 5, 7, 11, 17, 65537 })
                {
                    if (ee < phi && ee.GCD(phi) == 1)
                    {
                        E = ee;  found = true; break;
                    }
                }
                if (!found)
                {
                    for (int i = 0; i < 1000; i++)
                    {
                        e = BigIntegerHelper.RandomIntLimit(phi);
                        if (e >= 2 && e.GCD(phi) == 1)
                        {
                            E = e; found = true; break;
                        }
                    }
                }
                if (!found)
                {
                    GuiLogMessage("Could not generate a valid E for p=" + p + " and q=" + q + ".", NotificationLevel.Error);
                    return;
                }

                N = p * q;
                D = BigIntegerHelper.ModInverse(E, phi);
                break;

            //using x509 certificate
            case 3:
                try
                {
                    X509Certificate2 cert;
                    RSAParameters    par;

                    if (this.settings.Password != "")
                    {
                        GuiLogMessage("Password entered. Try getting public and private key", NotificationLevel.Info);
                        cert = new X509Certificate2(settings.CertificateFile, settings.Password, X509KeyStorageFlags.Exportable);
                        if (cert == null || cert.PrivateKey == null)
                        {
                            throw new Exception("Private Key of X509Certificate could not be fetched");
                        }
                        RSACryptoServiceProvider provider = (RSACryptoServiceProvider)cert.PrivateKey;
                        par = provider.ExportParameters(true);
                    }
                    else
                    {
                        GuiLogMessage("No Password entered. Try loading public key only", NotificationLevel.Info);
                        cert = new X509Certificate2(settings.CertificateFile);
                        if (cert == null || cert.PublicKey == null || cert.PublicKey.Key == null)
                        {
                            throw new Exception("Private Key of X509Certificate could not be fetched");
                        }
                        RSACryptoServiceProvider provider = (RSACryptoServiceProvider)cert.PublicKey.Key;
                        par = provider.ExportParameters(false);
                    }

                    try
                    {
                        N = new BigInteger(par.Modulus);
                    }
                    catch (Exception ex)
                    {
                        GuiLogMessage("Could not get N from certificate: " + ex.Message, NotificationLevel.Warning);
                    }

                    try
                    {
                        E = new BigInteger(par.Exponent);
                    }
                    catch (Exception ex)
                    {
                        GuiLogMessage("Could not get E from certificate: " + ex.Message, NotificationLevel.Warning);
                    }

                    try
                    {
                        if (this.settings.Password != "")
                        {
                            D = new BigInteger(par.D);
                        }
                        else
                        {
                            D = 0;
                        }
                    }
                    catch (Exception ex)
                    {
                        GuiLogMessage("Could not get D from certificate: " + ex.Message, NotificationLevel.Warning);
                    }
                }
                catch (Exception ex)
                {
                    GuiLogMessage("Could not load the selected certificate: " + ex.Message, NotificationLevel.Error);
                }
                break;
            }

            ProgressChanged(1.0, 1.0);
        }
Esempio n. 4
0
        /// <summary>
        /// Called by the environment to start generating of public/private keys
        /// </summary>
        public void Execute()
        {
            BigInteger p = 1, q = 1;

            ProgressChanged(0, 1);

            switch (settings.Source)
            {
            // manually enter primes
            case 0:
                try
                {
                    p = BigIntegerHelper.ParseExpression(settings.P);
                    q = BigIntegerHelper.ParseExpression(settings.Q);

                    if (!BigIntegerHelper.IsProbablePrime(p))
                    {
                        GuiLogMessage(p.ToString() + " is not prime!", NotificationLevel.Error);
                        return;
                    }
                    if (!BigIntegerHelper.IsProbablePrime(q))
                    {
                        GuiLogMessage(q.ToString() + " is not prime!", NotificationLevel.Error);
                        return;
                    }
                    if (p == q)
                    {
                        GuiLogMessage("The primes P and Q can not be equal!", NotificationLevel.Error);
                        return;
                    }
                }
                catch (Exception ex)
                {
                    GuiLogMessage("Invalid Big Number input: " + ex.Message, NotificationLevel.Error);
                    return;
                }


                break;

            //randomly generated primes
            case 1:
                try
                {
                    int keyBitLength = Convert.ToInt32(settings.KeyBitLength);
                    if (keyBitLength < 4)
                    {
                        GuiLogMessage("The keylength must be greater than 3.", NotificationLevel.Error);
                        return;
                    }

                    int i, maxtries = 10;
                    for (i = 0; i < maxtries; i++)
                    {
                        p = BigIntegerHelper.RandomPrimeMSBSet(keyBitLength - (keyBitLength / 2));
                        q = BigIntegerHelper.RandomPrimeMSBSet(keyBitLength / 2);
                        //GuiLogMessage("p = " + p.ToString(), NotificationLevel.Info);
                        //GuiLogMessage("q = " + q.ToString(), NotificationLevel.Info);
                        if (p != q)
                        {
                            break;
                        }
                    }
                    if (i == maxtries)
                    {
                        throw new Exception("Could not create two differing primes");
                    }
                }
                catch (Exception ex)
                {
                    GuiLogMessage(ex.Message, NotificationLevel.Error);
                    return;
                }
                break;

            default:
                throw new Exception("Illegal Key Generation Mode");
            }

            N      = p * q;
            G      = N + 1;
            Lambda = (p - 1) * (q - 1);

            ProgressChanged(1, 1);
        }
Esempio n. 5
0
        private void generateKeys(int k, int t, int l, BigInteger ownu)
        {
            if (l < 8 || l > 16)
            {
                throw new Exception("Choose parameter l from the interval 8<=l<=16 !");
            }

            if (t <= l)
            {
                throw new Exception("Parameter t must be greater than l.");
            }

            if (k <= t)
            {
                throw new Exception("Parameter k must be greater than t.");
            }

            if (k % 2 != 0)
            {
                throw new Exception("Parameter k has to be an even number!");
            }

            //if ((k / 2 < (l + 5)) || (k / 2 < t + 2))
            //    throw new Exception("Parameter k has to be specified by the rules k/2 > l+4 and k/2 > t+1!");

            if (k / 2 < l + t + 10)
            {
                throw new Exception("Choose parameters k,l,t so that k/2 >= l+t+10 !");
            }

            // generate u the minimal prime number greater than l+2
            //Workaround, TODO:
            //u = (l == 0) ? ownu : BigIntegerHelper.NextProbablePrime(l + l + 2);
            u = BigIntegerHelper.NextProbablePrime((1 << l) + 2);

            // generate vp, vq as a random t bit prime number
            vp = BigIntegerHelper.RandomPrimeBits(t);
            vq = BigIntegerHelper.RandomPrimeBits(t);

            // store the product vp*vq
            vpvq = vp * vq;

            // DGK style to generate p and q from u and v:

            // p is chosen as rp * u * vp + 1 where r_p is randomly chosen such that p has roughly k/2 bits
            BigInteger rp, rq, tmp;

            int needed_bits;

            tmp         = u * vp;
            needed_bits = k / 2 - (int)Math.Ceiling(BigInteger.Log(tmp, 2));
            //int needed_bits = k / 2 - mpz_sizeinbase(tmp1, 2);

            do
            {
                rp = BigIntegerHelper.RandomIntMSBSet(needed_bits - 1) * 2;
                p  = rp * tmp + 1;
            } while (!BigIntegerHelper.IsProbablePrime(p));

            // q is chosen as rq * u*vq + 1 where rq is randomly chosen such that q has roughly k/2 bits

            tmp         = u * vq;
            needed_bits = k / 2 - (int)Math.Ceiling(BigInteger.Log(tmp, 2));
            do
            {
                rq = BigIntegerHelper.RandomIntMSBSet(needed_bits - 1) * 2;
                q  = rq * tmp + 1;
            } while (!BigIntegerHelper.IsProbablePrime(q));

            // RSA modulus n
            N = p * q;

            /*
             * h must be random in Zn* and have order vp*vq. We
             * choose it by setting
             *
             * h = h' ^{rp * rq * u}.
             *
             * Seeing h as (hp, hq) and h' as (h'p, h'q) in Zp* x Zq*, we
             * then have
             *
             * (hp^vpvq, hq^vpvq) = (h'p^{rp*u*vp}^(rq*vq), h'q^{rq*u*vq}^(rp*vp))
             * = (1^(rq*vq), 1^(rp*vp)) = (1, 1)
             *
             * which means that h^(vpvq) = 1 in Zn*.
             *
             * So we only need to check that h is not 1 and that it really
             * is in Zn*.
             */

            BigInteger r;

            tmp = rp * rq * u;

            while (true)
            {
                r = BigIntegerHelper.RandomIntLimit(n);
                h = BigInteger.ModPow(r, tmp, n);
                if (h == 1)
                {
                    continue;
                }
                if (BigInteger.GreatestCommonDivisor(h, n) == 1)
                {
                    break;
                }
            }

            /*
             * g is chosen at random in Zn* such that it has order uv. This
             * is done in much the same way as for h, but the order of
             * power of the random number might be u, v or uv. We therefore
             * also check that g^u and g^v are different from 1.
             */

            BigInteger rprq = rp * rq;

            while (true)
            {
                r = BigIntegerHelper.RandomIntLimit(n);
                g = BigInteger.ModPow(r, rprq, n);

                // test if g is "good":
                if (g == 1)
                {
                    continue;
                }
                if (BigInteger.GreatestCommonDivisor(g, n) != 1)
                {
                    continue;
                }
                if (BigInteger.ModPow(g, u, n) == 1)
                {
                    continue;                                       // test if ord(g) == u
                }
                if (BigInteger.ModPow(g, vp, n) == 1)
                {
                    continue;                                       // test if ord(g) == vp
                }
                if (BigInteger.ModPow(g, vq, n) == 1)
                {
                    continue;                                       // test if ord(g) == vq
                }
                if (BigInteger.ModPow(g, u * vp, n) == 1)
                {
                    continue;                                       // test if ord(g) == u*vp
                }
                if (BigInteger.ModPow(g, u * vq, n) == 1)
                {
                    continue;                                       // test if ord(g) == u*vq
                }
                if (BigInteger.ModPow(g, vpvq, n) == 1)
                {
                    continue; // test if ord(g) == vp*vq
                }
                break;        // g has passed all tests
            }
        }