Esempio n. 1
0
        public string ListUnionGet()
        {
            BLL.Recommend_ResouceBLL bll = new BLL.Recommend_ResouceBLL();
            string ii = Newtonsoft.Json.JsonConvert.SerializeObject(bll.ListUnion("sa16045"));

            Dictionary <string, string> dic = new Dictionary <string, string>();

            dic.Add("您可能需要这些资源", ii);
            string result = Newtonsoft.Json.JsonConvert.SerializeObject(dic);

            return(result);
        }
Esempio n. 2
0
 public string GetAll(Models.MyUserModels myUserModels)
 {
     if (myUserModels == null || myUserModels.UId == null || myUserModels.UId == "")
     {
         return("error:用户名不对!");
     }
     else
     {
         BLL.Recommend_ResouceBLL bll = new BLL.Recommend_ResouceBLL();
         string ii = Newtonsoft.Json.JsonConvert.SerializeObject(bll.GetAll(myUserModels.UId));
         return(ii);
     }
 }
Esempio n. 3
0
        public string ListUnion(Models.MyUserModels myUserModels)
        {
            if (myUserModels == null || myUserModels.UId == null || myUserModels.UId == "")
            {
                return("error:用户名不对!");
            }
            else
            {
                BLL.Recommend_ResouceBLL bll = new BLL.Recommend_ResouceBLL();
                string ii = Newtonsoft.Json.JsonConvert.SerializeObject(bll.ListUnion(myUserModels.UId));

                Dictionary <string, string> dic = new Dictionary <string, string>();
                dic.Add("您可能需要这些资源", ii);
                string result = Newtonsoft.Json.JsonConvert.SerializeObject(dic);
                return(result);
            }
        }
Esempio n. 4
0
        public int operationDistance()
        {
            SqlHelper sh = new SqlHelper();

            sh.Open();

            OperationDAL opt = new OperationDAL(sh);

            opt.DeleteRecommend();  //删除推荐结果表中数据

            try {
                //1、取出所有老师的ID
                List <string> techIDs = opt.getAllTechID();

                //2、构造每个老师的评分表
                Dictionary <string, Dictionary <string, double> > dic = new Dictionary <string, Dictionary <string, double> >();
                dic = opt.makeMarkTable(techIDs);

                //3、计算距离(数据稀疏-->余弦相似度;分数膨胀-->皮尔逊;稀疏且膨胀-->修正余弦相似度)
                //(1).计算每个老师对资源打分的平均值   这部分存在问题
                //Dictionary<string, double> dicAveg = new Dictionary<string, double>();
                //foreach (string tID in dic.Keys)
                //{
                //    double sum = 0.0;
                //    //遍历教师tID对资源的评分
                //    foreach (string res in dic[tID].Keys)
                //    {
                //        sum = sum + dic[tID][res];
                //    }
                //    double aveg = sum / dic[tID].Count;

                //    dicAveg.Add(tID, aveg);
                //}


                //计算每个用户同其他用户的(曼哈顿)距离,并按远近排序
                Dictionary <string, Dictionary <string, double> > sortDic = new Dictionary <string, Dictionary <string, double> >();
                foreach (string tid in dic.Keys)
                {
                    Dictionary <string, double> neghborDic = nearestNeighbor(tid, dic);
                    sortDic.Add(tid, neghborDic);
                }

                //4.在排序后的评分字典中为每个取出最相近的K个,把这些用户评分高并且推荐目标没有用过的资源作为推荐项,把推荐结果保存(更新)到数据库
                foreach (string tid in sortDic.Keys)
                {
                    Dictionary <string, double> dicJuLi = sortDic[tid];
                    List <string> techList  = new List <string>();
                    int           K         = 5; //K近邻
                    List <string> recomlist = new List <string>();
                    for (int i = 0; i < K; i++)
                    {
                        KeyValuePair <string, double> kvp = dicJuLi.ElementAt(i);
                        foreach (string res in dic[kvp.Key].Keys)
                        {
                            if (dic[kvp.Key][res] > 2 && !recomlist.Contains(res))
                            { //评分大于3的加入推荐候选项列表
                                recomlist.Add(res);
                            }
                        }
                    }

                    //找出本用户已经用过的资源列表
                    List <string> usedlist = new List <string>();
                    foreach (string res in dic[tid].Keys)
                    {
                        usedlist.Add(res);
                    }

                    //recomlist和usedlist做差集
                    recomlist = recomlist.Except(usedlist).ToList <string>();

                    if (recomlist.Count < 5)
                    { //推荐项少于5,补充社会化属性标签推荐结果
                        BLL.Recommend_ResouceBLL bll        = new BLL.Recommend_ResouceBLL();
                        List <string>            recomlistB = bll.ListUnion(tid);
                        foreach (string res in recomlistB)
                        {
                            if (!recomlist.Contains(res) && recomlist.Count < 5)
                            {
                                recomlist.Add(res);
                            }
                        }
                    }

                    //把用户ID和推荐结果集作为参数调用插入数据库的方法
                    int temp = opt.saveResult(tid, recomlist);
                }
            }
            catch (Exception ex)
            {
                return(0);
            }
            return(1);
        }