static unsafe int Main(string[] args) { int testResult = Pass; if (Avx.IsSupported) { using (TestTable <float> floatTable = new TestTable <float>(new float[8] { 22, -1, -50, 0, 22, -1, -50, 0 }, new float[8] { 22, -1, -50, 0, 22, -1, -50, 0 }, new float[8])) using (TestTable <double> doubleTable = new TestTable <double>(new double[4] { 1, -5, 100, 0 }, new double[4] { 22, -1, -50, 0 }, new double[4])) { var vf1 = Unsafe.Read <Vector256 <float> >(floatTable.inArray1Ptr); var vf2 = Unsafe.Read <Vector256 <float> >(floatTable.inArray2Ptr); var vf3 = Avx.HorizontalAdd(vf1, vf2); Unsafe.Write(floatTable.outArrayPtr, vf3); if (!floatTable.CheckResult((left, right, result) => (left[0] + left[1] == result[0]) && (right[0] + right[1] == result[2]) && (left[2] + left[3] == result[1]) && (right[2] + right[3] == result[3]) && (left[4] + left[5] == result[4]) && (right[4] + right[5] == result[6]) && (left[6] + left[7] == result[5]) && (right[6] + right[7] == result[7]))) { Console.WriteLine("Avx HorizontalAdd failed on float:"); foreach (var item in floatTable.outArray) { Console.Write(item + ", "); } Console.WriteLine(); testResult = Fail; } var vd1 = Unsafe.Read <Vector256 <double> >(doubleTable.inArray1Ptr); var vd2 = Unsafe.Read <Vector256 <double> >(doubleTable.inArray2Ptr); var vd3 = Avx.HorizontalAdd(vd1, vd2); Unsafe.Write(doubleTable.outArrayPtr, vd3); if (!doubleTable.CheckResult((left, right, result) => (left[0] + left[1] == result[0]) && (right[0] + right[1] == result[1]) && (left[2] + left[3] == result[2]) && (right[2] + right[3] == result[3]))) { Console.WriteLine("Avx HorizontalAdd failed on double:"); foreach (var item in doubleTable.outArray) { Console.Write(item + ", "); } Console.WriteLine(); testResult = Fail; } } } return(testResult); }
public static Span <Complex> Multiply(ReadOnlySpan <Complex> left, ReadOnlySpan <Complex> right) { var result = new Complex[Math.Min(left.Length, right.Length)].AsSpan(); var vectorRes = MemoryMarshal.Cast <Complex, Vector256 <double> >(result); var vectorLeft = MemoryMarshal.Cast <Complex, Vector256 <double> >(left); var vectorRight = MemoryMarshal.Cast <Complex, Vector256 <double> >(right); for (int i = 0; i < vectorRes.Length; i++) { var l = vectorLeft[i]; var r = vectorRight[i]; vectorRes[i] = Avx.HorizontalAdd( Avx.Multiply( Avx.Multiply(l, r), Vector256.Create(1.0, -1.0, 1.0, -1.0)), Avx.Multiply( l, Avx.Permute(r, 0b0101) )); } for (int i = 2 * vectorRes.Length; i < result.Length; i++) { result[i] = left[i] * right[i]; } return(result); }
public static Vector256 <double> HorizontalAdd(Vector256 <double> left, Vector256 <double> right) { if (Avx.IsSupported) { return(Avx.HorizontalAdd(left, right)); } return(HorizontalAdd_Software(left, right)); }
private Hit[] RayTraceAVXFaster(Ray ray) { Vector256 <double> dir = (Vector256 <double>)ray.Direction; Vector256 <double> vert0 = (Vector256 <double>)Vert0.Position; Vector256 <double> edge0to1 = (Vector256 <double>)Edge0to1; Vector256 <double> edge0to2 = (Vector256 <double>)Edge0to2; Vector256 <double> offset = Avx.Subtract((Vector256 <double>)ray.Origin, vert0); Vector256 <double> side1 = SIMDHelpers.Cross(offset, edge0to1); Vector256 <double> side2 = SIMDHelpers.Cross(dir, edge0to2); // Prepare all dot products Vector256 <double> uvTemp = Avx.Multiply(offset, side2); // u Vector256 <double> temp = Avx.Multiply(dir, side1); // v Vector256 <double> edge2Temp = Avx.Multiply(edge0to2, side1); Vector256 <double> distTemp = Avx.Multiply(edge0to1, side2); uvTemp = Avx.HorizontalAdd(uvTemp, temp); edge2Temp = Avx.HorizontalAdd(edge2Temp, edge2Temp); distTemp = Avx.HorizontalAdd(distTemp, distTemp); // Complete all dot products for SSE ops Vector128 <double> uvs = SIMDHelpers.Add2(uvTemp); Vector128 <double> dist = SIMDHelpers.Add2(edge2Temp); Vector128 <double> temp1 = SIMDHelpers.Add2(distTemp); Vector128 <double> temp2; // vec2 constants we'll be using later Vector128 <double> ones2 = SIMDHelpers.BroadcastScalar2(1D); Vector128 <double> zeroes2 = new Vector128 <double>(); // Reciprocal of distance along edge0to1 temp1 = Sse2.Divide(ones2, temp1); temp2 = Sse2.CompareOrdered(temp1, temp1); // Remove NaNs from the result, replaced with 0 Vector128 <double> distZeroed = Sse2.And(temp1, temp2); uvs = Sse2.Multiply(uvs, distZeroed); dist = Sse2.Multiply(dist, distZeroed); // compare uvs < 0 and > 1, dist < 0, jump out if any of those conditions are met temp1 = Sse2.CompareLessThan(uvs, zeroes2); temp2 = Mirror ? uvs : Sse3.HorizontalAdd(uvs, uvs); temp2 = Sse2.CompareGreaterThan(temp2, ones2); temp1 = Sse2.Or(temp1, temp2); temp2 = Sse2.CompareLessThan(dist, zeroes2); temp1 = Sse2.Or(temp1, temp2); if (!Avx.TestZ(temp1, temp1)) { return(default);
public static double ReduceSum(this Vector <double> vector) { #if NETCOREAPP3_0 if (Avx.IsSupported) { Vector256 <double> a = Unsafe.As <Vector <double>, Vector256 <double> >(ref vector); Vector256 <double> tmp = Avx.HorizontalAdd(a, a); Vector128 <double> hi128 = tmp.GetUpper(); Vector128 <double> lo128 = tmp.GetLower(); Vector128 <double> s = Sse2.Add(lo128, hi128); return(s.ToScalar()); } #endif return(Vector.Dot(Vector <double> .One, vector)); }
public static Vector256 <double> DotProduct4D(Vector256 <double> left, Vector256 <double> right) { if (Avx.IsSupported) { Vector256 <double> result = Avx.Multiply(left, right); // We now have (X, Y, Z, 0) correctly, and want to add them together and fill with that result result = Avx.HorizontalAdd(result, result); // Now we have (X + Y, X + Y, Z + 0, Z + 0) result = Avx.Add(result, Avx.Permute2x128(result, result, 0b_0000_0001)); // We switch the 2 halves, and add that to the original, getting the result in all elems return(result); } return(DotProduct4D_Software(left, right)); }
public Vector256 <double> Permute(Vector256 <double> left, Vector256 <double> right) { Vector256 <double> mul = Avx.Multiply(left, right); // Set W to zero Vector256 <double> result = Avx.And(mul, MaskWDouble); // We now have (X, Y, Z, 0) correctly, and want to add them together and fill with that result result = Avx.HorizontalAdd(result, result); // Now we have (X + Y, X + Y, Z + 0, Z + 0) result = Avx.Add(result, Avx.Permute2x128(result, result, 0b_0000_0001)); // We switch the 2 halves, and add that to the original, getting the result in all elems // Set W to zero result = Avx.And(result, MaskWDouble); return(result); }
public Vector256 <double> DoubleHadd(Vector256 <double> left, Vector256 <double> right) { Vector256 <double> mul = Avx.Multiply(left, right); // Set W to zero Vector256 <double> result = Avx.And(mul, MaskWDouble); // We now have (X, Y, Z, 0) correctly, and want to add them together and fill with that result result = Avx.HorizontalAdd(result, result); // Now we have (X + Y, X + Y, Z + 0, Z + 0) result = Avx.Shuffle(result, result, ShuffleValues._3_1_2_0); result = Avx.HorizontalAdd(result, result); // We switch the 2 halves, and add that to the original, getting the result in all elems // Set W to zero result = Avx.And(result, MaskWDouble); return(result); }
public static unsafe float Sum_AVX(float[] array) { Vector256 <float> sum = Avx.SetZeroVector256 <float>(); fixed(float *ptr = &array[0]) { for (int i = 0; i < array.Length; i += 8) { var current = Avx.LoadVector256(ptr + i); sum = Avx.Add(current, sum); } } // sum all values in __m256 (horizontal sum) var ha = Avx.HorizontalAdd(sum, sum); var ha2 = Avx.HorizontalAdd(ha, ha); var lo = Avx.ExtractVector128(ha2, 1); var resultV = Sse.Add(Avx.GetLowerHalf(ha2), lo); return(Sse.ConvertToSingle(resultV)); }
public static Vector256 <double> DotProduct3D(Vector256 <double> left, Vector256 <double> right) { // We can use AVX to vectorize the multiplication if (Avx.IsSupported) { Vector256 <double> mul = Avx.Multiply(left, right); // Set W to zero Vector256 <double> result = Avx.And(mul, DoubleConstants.MaskW); // We now have (X, Y, Z, 0) correctly, and want to add them together and fill with that result result = Avx.HorizontalAdd(result, result); // Now we have (X + Y, X + Y, Z + 0, Z + 0) result = Avx.Add(result, Avx.Permute2x128(result, result, 0b_0000_0001)); // We switch the 2 halves, and add that to the original, getting the result in all elems return(result); } return(DotProduct3D_Software(left, right)); }
// This function implements Algorithm 1 in https://github.com/wschin/fast-ffm/blob/master/fast-ffm.pdf. // Compute the output value of the field-aware factorization, as the sum of the linear part and the latent part. // The linear part is the inner product of linearWeights and featureValues. // The latent part is the sum of all intra-field interactions in one field f, for all fields possible public static unsafe void CalculateIntermediateVariables(int *fieldIndices, int *featureIndices, float *featureValues, float *linearWeights, float *latentWeights, float *latentSum, float *response, int fieldCount, int latentDim, int count) { Contracts.Assert(Avx.IsSupported); // The number of all possible fields. int m = fieldCount; int d = latentDim; int c = count; int * pf = fieldIndices; int * pi = featureIndices; float *px = featureValues; float *pw = linearWeights; float *pv = latentWeights; float *pq = latentSum; float linearResponse = 0; float latentResponse = 0; Unsafe.InitBlock(pq, 0, (uint)(m * m * d * sizeof(float))); Vector256 <float> y = Vector256 <float> .Zero; Vector256 <float> tmp = Vector256 <float> .Zero; for (int i = 0; i < c; i++) { int f = pf[i]; int j = pi[i]; linearResponse += pw[j] * px[i]; Vector256 <float> x = Avx.BroadcastScalarToVector256(px + i); Vector256 <float> xx = Avx.Multiply(x, x); // tmp -= <v_j,f, v_j,f> * x * x int vBias = j * m * d + f * d; // j-th feature's latent vector in the f-th field hidden space. float *vjf = pv + vBias; for (int k = 0; k + 8 <= d; k += 8) { Vector256 <float> vjfBuffer = Avx.LoadVector256(vjf + k); tmp = MultiplyAddNegated(Avx.Multiply(vjfBuffer, vjfBuffer), xx, tmp); } for (int fprime = 0; fprime < m; fprime++) { vBias = j * m * d + fprime * d; int qBias = f * m * d + fprime * d; float *vjfprime = pv + vBias; float *qffprime = pq + qBias; // q_f,f' += v_j,f' * x for (int k = 0; k + 8 <= d; k += 8) { Vector256 <float> vjfprimeBuffer = Avx.LoadVector256(vjfprime + k); Vector256 <float> q = Avx.LoadVector256(qffprime + k); q = MultiplyAdd(vjfprimeBuffer, x, q); Avx.Store(qffprime + k, q); } } } for (int f = 0; f < m; f++) { // tmp += <q_f,f, q_f,f> float *qff = pq + f * m * d + f * d; for (int k = 0; k + 8 <= d; k += 8) { Vector256 <float> qffBuffer = Avx.LoadVector256(qff + k); // Intra-field interactions. tmp = MultiplyAdd(qffBuffer, qffBuffer, tmp); } // y += <q_f,f', q_f',f>, f != f' // Whis loop handles inter - field interactions because f != f'. for (int fprime = f + 1; fprime < m; fprime++) { float *qffprime = pq + f * m * d + fprime * d; float *qfprimef = pq + fprime * m * d + f * d; for (int k = 0; k + 8 <= d; k += 8) { // Inter-field interaction. Vector256 <float> qffprimeBuffer = Avx.LoadVector256(qffprime + k); Vector256 <float> qfprimefBuffer = Avx.LoadVector256(qfprimef + k); y = MultiplyAdd(qffprimeBuffer, qfprimefBuffer, y); } } } y = MultiplyAdd(_point5, tmp, y); tmp = Avx.Add(y, Avx.Permute2x128(y, y, 1)); tmp = Avx.HorizontalAdd(tmp, tmp); y = Avx.HorizontalAdd(tmp, tmp); Sse.StoreScalar(&latentResponse, y.GetLower()); // The lowest slot is the response value. *response = linearResponse + latentResponse; }
private static float SumVector256(Vector256 <float> v) { v = Avx.HorizontalAdd(v, v); //0+1, 2+3, .., .., 4+5, 6+7, .., .. v = Avx.HorizontalAdd(v, v); //0+1+2+3, .., .., .., 4+5+6+7, .., .., .. return(v.GetUpper().ToScalar() + v.GetLower().ToScalar()); }
public static unsafe float GetScribnerBoardFeetPerAcre(Trees trees) { // for now, assume all trees are of the same species if (trees.Species != FiaCode.PseudotsugaMenziesii) { throw new NotSupportedException(); } if (trees.Units != Units.English) { throw new NotSupportedException(); } // Douglas-fir #if DEBUG Vector128 <float> v6p8 = AvxExtensions.BroadcastScalarToVector128(6.8F); Vector128 <float> v10k = AvxExtensions.BroadcastScalarToVector128(10.0F * 1000.0F); #endif // constants Vector128 <float> forestersEnglish = AvxExtensions.BroadcastScalarToVector128(Constant.ForestersEnglish); Vector128 <float> one = AvxExtensions.BroadcastScalarToVector128(1.0F); Vector128 <float> six = AvxExtensions.BroadcastScalarToVector128(6.0F); Vector128 <float> vm3p21809 = AvxExtensions.BroadcastScalarToVector128(-3.21809F); // b4 Vector128 <float> v0p04948 = AvxExtensions.BroadcastScalarToVector128(0.04948F); Vector128 <float> vm0p15664 = AvxExtensions.BroadcastScalarToVector128(-0.15664F); Vector128 <float> v2p02132 = AvxExtensions.BroadcastScalarToVector128(2.02132F); Vector128 <float> v1p63408 = AvxExtensions.BroadcastScalarToVector128(1.63408F); Vector128 <float> vm0p16184 = AvxExtensions.BroadcastScalarToVector128(-0.16184F); Vector128 <float> v1p033 = AvxExtensions.BroadcastScalarToVector128(1.033F); Vector128 <float> v1p382937 = AvxExtensions.BroadcastScalarToVector128(1.382937F); Vector128 <float> vm0p4015292 = AvxExtensions.BroadcastScalarToVector128(-0.4015292F); Vector128 <float> v0p087266 = AvxExtensions.BroadcastScalarToVector128(0.087266F); Vector128 <float> vm0p174533 = AvxExtensions.BroadcastScalarToVector128(-0.174533F); Vector128 <float> vm0p6896598794 = AvxExtensions.BroadcastScalarToVector128(-0.6896598794F); // rc6-rs632 Vector128 <float> v0p993 = AvxExtensions.BroadcastScalarToVector128(0.993F); Vector128 <float> v0p174439 = AvxExtensions.BroadcastScalarToVector128(0.174439F); Vector128 <float> v0p117594 = AvxExtensions.BroadcastScalarToVector128(0.117594F); Vector128 <float> vm8p210585 = AvxExtensions.BroadcastScalarToVector128(-8.210585F); Vector128 <float> v0p236693 = AvxExtensions.BroadcastScalarToVector128(0.236693F); Vector128 <float> v0p00001345 = AvxExtensions.BroadcastScalarToVector128(0.00001345F); Vector128 <float> v0p00001937 = AvxExtensions.BroadcastScalarToVector128(0.00001937F); Vector128 <float> v1p001491 = AvxExtensions.BroadcastScalarToVector128(1.001491F); Vector128 <float> vm6p924097 = AvxExtensions.BroadcastScalarToVector128(-6.924097F); Vector128 <float> v0p912733 = AvxExtensions.BroadcastScalarToVector128(0.912733F); Vector128 <float> v0p00001351 = AvxExtensions.BroadcastScalarToVector128(0.00001351F); fixed(float *dbh = &trees.Dbh[0], expansionFactors = &trees.LiveExpansionFactor[0], height = &trees.Height[0]) { Vector128 <float> standBoardFeetPerAcre = Vector128 <float> .Zero; for (int treeIndex = 0; treeIndex < trees.Count; treeIndex += Constant.Simd128x4.Width) { Vector128 <float> dbhInInches = Avx.LoadVector128(dbh + treeIndex); Vector128 <float> heightInFeet = Avx.LoadVector128(height + treeIndex); Vector128 <float> logDbhInInches = MathV.Log10(dbhInInches); Vector128 <float> logHeightInFeet = MathV.Log10(heightInFeet); // FiaCode.PseudotsugaMenziesii => -3.21809F + 0.04948F * logHeightInFeet * logDbhInInches - 0.15664F * logDbhInInches * logDbhInInches + // 2.02132F * logDbhInInches + 1.63408F * logHeightInFeet - 0.16184F * logHeightInFeet * logHeightInFeet, Vector128 <float> cvtsl = Avx.Add(vm3p21809, Avx.Multiply(v0p04948, Avx.Multiply(logHeightInFeet, logDbhInInches))); cvtsl = Avx.Add(cvtsl, Avx.Multiply(vm0p15664, Avx.Multiply(logDbhInInches, logDbhInInches))); cvtsl = Avx.Add(cvtsl, Avx.Multiply(v2p02132, logDbhInInches)); cvtsl = Avx.Add(cvtsl, Avx.Multiply(v1p63408, logHeightInFeet)); cvtsl = Avx.Add(cvtsl, Avx.Multiply(vm0p16184, Avx.Multiply(logHeightInFeet, logHeightInFeet))); Vector128 <float> cubicFeet = MathV.Exp10(cvtsl); Vector128 <float> dbhSquared = Avx.Multiply(dbhInInches, dbhInInches); // could be consolidated by merging other scaling constants with Forester's constant for basal area Vector128 <float> basalAreaInSquareFeet = Avx.Multiply(forestersEnglish, dbhSquared); // b4 = cubicFeet / (1.033F * (1.0F + 1.382937F * MathV.Exp(-4.015292F * dbhInInches / 10.0F)) * (basalAreaInSquareFeet + 0.087266F) - 0.174533F); Vector128 <float> b4 = Avx.Divide(cubicFeet, Avx.Add(Avx.Multiply(v1p033, Avx.Multiply(Avx.Add(one, Avx.Multiply(v1p382937, MathV.Exp(Avx.Multiply(vm0p4015292, dbhInInches)))), Avx.Add(basalAreaInSquareFeet, v0p087266))), vm0p174533)); Vector128 <float> cv4 = Avx.Multiply(b4, Avx.Subtract(basalAreaInSquareFeet, v0p087266)); // conversion to Scribner volumes for 32 foot trees // Waddell 2014:32 // rc6 = 0.993F * (1.0F - MathF.Pow(0.62F, dbhInInches - 6.0F)); Vector128 <float> rc6 = Avx.Multiply(v0p993, Avx.Subtract(one, MathV.Exp(Avx.Multiply(vm0p6896598794, Avx.Subtract(dbhInInches, six))))); // log2(0.62) = -0.6896598794 Vector128 <float> cv6 = Avx.Multiply(rc6, cv4); Vector128 <float> logB4 = MathV.Log10(b4); // float rs616 = MathF.Pow(10.0F, 0.174439F + 0.117594F * logDbhInInches * logB4 - 8.210585F / (dbhInInches * dbhInInches) + 0.236693F * logB4 - 0.00001345F * b4 * b4 - 0.00001937F * dbhInInches * dbhInInches); Vector128 <float> rs616l = Avx.Add(v0p174439, Avx.Multiply(v0p117594, Avx.Multiply(logDbhInInches, logB4))); rs616l = Avx.Add(rs616l, Avx.Divide(vm8p210585, dbhSquared)); rs616l = Avx.Add(rs616l, Avx.Multiply(v0p236693, logB4)); rs616l = Avx.Subtract(rs616l, Avx.Multiply(v0p00001345, Avx.Multiply(b4, b4))); rs616l = Avx.Subtract(rs616l, Avx.Multiply(v0p00001937, dbhSquared)); Vector128 <float> rs616 = MathV.Exp10(rs616l); Vector128 <float> sv616 = Avx.Multiply(rs616, cv6); // Scribner board foot volume to a 6 inch top for 16 foot logs // float rs632 = 1.001491F - 6.924097F / tarif + 0.00001351F * dbhInInches * dbhInInches; Vector128 <float> rs632 = Avx.Add(v1p001491, Avx.Divide(vm6p924097, Avx.Multiply(v0p912733, b4))); rs632 = Avx.Add(rs632, Avx.Multiply(v0p00001351, dbhSquared)); Vector128 <float> zeroVolumeMask = Avx.CompareLessThanOrEqual(dbhInInches, six); Vector128 <float> sv632 = Avx.Multiply(rs632, sv616); // Scribner board foot volume to a 6 inch top for 32 foot logs sv632 = Avx.BlendVariable(sv632, Vector128 <float> .Zero, zeroVolumeMask); #if DEBUG DebugV.Assert(Avx.CompareGreaterThanOrEqual(Avx.BlendVariable(rc6, Vector128 <float> .Zero, zeroVolumeMask), Vector128 <float> .Zero)); DebugV.Assert(Avx.CompareLessThanOrEqual(rc6, one)); DebugV.Assert(Avx.CompareGreaterThanOrEqual(Avx.BlendVariable(rs616, one, zeroVolumeMask), one)); DebugV.Assert(Avx.CompareLessThanOrEqual(Avx.BlendVariable(rs616, Vector128 <float> .Zero, zeroVolumeMask), v6p8)); DebugV.Assert(Avx.CompareGreaterThanOrEqual(Avx.BlendVariable(rs632, Vector128 <float> .Zero, zeroVolumeMask), Vector128 <float> .Zero)); DebugV.Assert(Avx.CompareLessThanOrEqual(Avx.BlendVariable(rs632, Vector128 <float> .Zero, zeroVolumeMask), one)); DebugV.Assert(Avx.CompareGreaterThanOrEqual(Avx.BlendVariable(sv632, Vector128 <float> .Zero, zeroVolumeMask), Vector128 <float> .Zero)); DebugV.Assert(Avx.CompareLessThanOrEqual(Avx.BlendVariable(sv632, Vector128 <float> .Zero, zeroVolumeMask), v10k)); #endif Vector128 <float> expansionFactor = Avx.LoadVector128(expansionFactors + treeIndex); standBoardFeetPerAcre = Avx.Add(standBoardFeetPerAcre, Avx.Multiply(expansionFactor, sv632)); } standBoardFeetPerAcre = Avx.HorizontalAdd(standBoardFeetPerAcre, standBoardFeetPerAcre); standBoardFeetPerAcre = Avx.HorizontalAdd(standBoardFeetPerAcre, standBoardFeetPerAcre); return(standBoardFeetPerAcre.ToScalar()); } }
public Intro() { var middleVector = Vector128.Create(1.0f); // middleVector = <1,1,1,1> middleVector = Vector128.CreateScalar(-1.0f); // middleVector = <-1,0,0,0> var floatBytes = Vector64.AsByte(Vector64.Create(1.0f, -1.0f)); // floatBytes = <0, 0, 128, 63, 0, 0, 128, 191> if (Avx.IsSupported) { var left = Vector256.Create(-2.5f); // <-2.5, -2.5, -2.5, -2.5, -2.5, -2.5, -2.5, -2.5> var right = Vector256.Create(5.0f); // <5, 5, 5, 5, 5, 5, 5, 5> Vector256 <float> result = Avx.AddSubtract(left, right); // result = <-7.5, 2.5, -7.5, 2.5, -7.5, 2.5, -7.5, 2.5>xit left = Vector256.Create(-1.0f, -2.0f, -3.0f, -4.0f, -50.0f, -60.0f, -70.0f, -80.0f); right = Vector256.Create(0.0f, 2.0f, 3.0f, 4.0f, 50.0f, 60.0f, 70.0f, 80.0f); result = Avx.UnpackHigh(left, right); // result = <-3, 3, -4, 4, -70, 70, -80, 80> result = Avx.UnpackLow(left, right); // result = <-1, 1, -2, 2, -50, 50, -60, 60> result = Avx.DotProduct(left, right, 0b1111_0001); // result = <-30, 0, 0, 0, -17400, 0, 0, 0> bool testResult = Avx.TestC(left, right); // testResult = true testResult = Avx.TestC(right, left); // testResult = false Vector256 <float> result1 = Avx.Divide(left, right); var plusOne = Vector256.Create(1.0f); result = Avx.Compare(right, result1, FloatComparisonMode.OrderedGreaterThanNonSignaling); result = Avx.Compare(right, result1, FloatComparisonMode.UnorderedNotLessThanNonSignaling); left = Vector256.Create(0.0f, 3.0f, -3.0f, 4.0f, -50.0f, 60.0f, -70.0f, 80.0f); right = Vector256.Create(0.0f, 2.0f, 3.0f, 2.0f, 50.0f, -60.0f, 70.0f, -80.0f); Vector256 <float> nanInFirstPosition = Avx.Divide(left, right); left = Vector256.Create(1.1f, 3.3333333f, -3.0f, 4.22f, -50.0f, 60.0f, -70.0f, 80.0f); Vector256 <float> InfInFirstPosition = Avx.Divide(left, right); left = Vector256.Create(-1.1f, 3.0f, 1.0f / 3.0f, MathF.PI, -50.0f, 60.0f, -70.0f, 80.0f); right = Vector256.Create(0.0f, 2.0f, 3.1f, 2.0f, 50.0f, -60.0f, 70.0f, -80.0f); Vector256 <float> compareResult = Avx.Compare(left, right, FloatComparisonMode.OrderedGreaterThanNonSignaling); // compareResult = <0, NaN, 0, NaN, 0, NaN, 0, NaN> Vector256 <float> mixed = Avx.BlendVariable(left, right, compareResult); // mixed = <-1, 2, -3, 2, -50, -60, -70, -80> //left = Vector256.Create(-1.0f, 1.0f, -1.0f, 1.0f, -1.0f, 1.0f, -1.0f, 1.0f); //right = Vector256.Create(1.0f, 1.0f, -1.0f, 1.0f, 1.0f, 1.0f, -1.0f, 1.0f); Vector256 <float> other = right = Vector256.Create(0.0f, 2.0f, 3.0f, 2.0f, 50.0f, -60.0f, 70.0f, -80.0f); bool bRes = Avx.TestZ(plusOne, compareResult); bool bRes2 = Avx.TestC(plusOne, compareResult); bool allTrue = !Avx.TestZ(compareResult, compareResult); compareResult = Avx.Compare(nanInFirstPosition, right, FloatComparisonMode.OrderedEqualNonSignaling); // compareResult = <0, NaN, 0, NaN, 0, NaN, 0, NaN> compareResult = Avx.Compare(nanInFirstPosition, right, FloatComparisonMode.UnorderedEqualNonSignaling); compareResult = Avx.Compare(InfInFirstPosition, right, FloatComparisonMode.UnorderedNotLessThanOrEqualNonSignaling); compareResult = Avx.Compare(InfInFirstPosition, right, FloatComparisonMode.OrderedGreaterThanNonSignaling); var left128 = Vector128.Create(1.0f, 2.0f, 3.0f, 4.0f); var right128 = Vector128.Create(2.0f, 3.0f, 4.0f, 5.0f); Vector128 <float> compResult128 = Sse.CompareGreaterThan(left128, right128); // compResult128 = <0, 0, 0, 0> int res = Avx.MoveMask(compareResult); if (Fma.IsSupported) { Vector256 <float> resultFma = Fma.MultiplyAdd(left, right, other); // = left * right + other for each element resultFma = Fma.MultiplyAddNegated(left, right, other); // = -(left * right + other) for each element resultFma = Fma.MultiplySubtract(left, right, other); // = left * right - other for each element Fma.MultiplyAddSubtract(left, right, other); // even elements (0, 2, ...) like MultiplyAdd, odd elements like MultiplySubtract } result = Avx.DotProduct(left, right, 0b1010_0001); // result = <-20, 0, 0, 0, -10000, 0, 0, 0> result = Avx.Floor(left); // result = <-3, -3, -3, -3, -3, -3, -3, -3> result = Avx.Add(left, right); // result = <2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5> result = Avx.Ceiling(left); // result = <-2, -2, -2, -2, -2, -2, -2, -2> result = Avx.Multiply(left, right); // result = <-12.5, -12.5, -12.5, -12.5, -12.5, -12.5, -12.5, -12.5> result = Avx.HorizontalAdd(left, right); // result = <-5, -5, 10, 10, -5, -5, 10, 10> result = Avx.HorizontalSubtract(left, right); // result = <0, 0, 0, 0, 0, 0, 0, 0> double[] someDoubles = new double[] { 1.0, 3.0, -2.5, 7.5, 10.8, 0.33333 }; double[] someOtherDoubles = new double[] { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 }; double[] someResult = new double[someDoubles.Length]; float[] someFloats = new float[] { 1, 2, 3, 4, 10, 20, 30, 40, 0 }; float[] someOtherFloats = new float[] { 1, 1, 1, 1, 1, 1, 1, 1 }; unsafe { fixed(double *ptr = &someDoubles[1]) { fixed(double *ptr2 = &someResult[0]) { Vector256 <double> res2 = Avx.LoadVector256(ptr); // res2 = <3, -2.5, 7.5, 10.8> Avx.Store(ptr2, res2); } } fixed(float *ptr = &someFloats[0]) { fixed(float *ptr2 = &someOtherFloats[0]) { Vector256 <float> res2 = Avx.DotProduct(Avx.LoadVector256(ptr), Avx.LoadVector256(ptr2), 0b0001_0001); //Avx.Store(ptr2, res2); } } } } }