IEnumerator CheckEveryHalfSec() { yield return(new WaitForSeconds(0.5f)); for (int i = 0; i < T.Length; i++) { distance [i] = Vector3.Distance(det [i].pos, Player.transform.position); //print (distance [i] + det[i].Name); //check si c'est a moins de distancePremierCercleDetection if (distance [i] < distancePremierCercleDetection) { if (!isDetectedAround.Contains(det [i])) { isDetectedAround.Add(det [i]); print("added smthg to array"); print(det [i].Name); //det [i].isDetectedFarCircle = true; //Envoyer au détectable spécifique le fait qu'il a été vu de loin GameObject.Find(det[i].Name).GetComponent <DetectableLocalManager>().ImDetectedFar(); T[i].transform.GetChild(0).gameObject.SetActive(true); //play sound AudioSource AS; AS = GameObject.Find("Sound1").GetComponent <AudioSource> (); AS.PlayOneShot(LongueDistanceDetection); //ajouter a la carte l'info comme quoi un nouvel objet est apparu // faire briller l'icone de la map } } if (distance[i] <= distancePressE) { GameObject.Find(det[i].Name).GetComponent <DetectableLocalManager>().YouCanPressE(); } if (distance[i] > distancePressE) { GameObject.Find(det[i].Name).GetComponent <DetectableLocalManager>().ICantPressEAnyMore(); } //check si c'est a moins de distancePremierCercleDetection } //calcul chaud froid par rapport a l'objet le plus proche DistanceLaPlusProche = (Mathf.Min(distance)); // print (Array.IndexOf(distance, Mathf.Min(distance))); //print (DistanceLaPlusProche); //systeme de chaud froid if (DistanceLaPlusProche < distanceChaudFroid) { ActiverChaudFroid(); } else { DesactiverChaudFroid(); } //systeme lacher le cube if (DistanceLaPlusProche < distancePressE) { //global action comme le son ActionDisponibleLacherCube(); //envoyer au local } else { DesactiverActionDisponibleLacherCube(); } StartCoroutine("CheckEveryHalfSec"); }
public static void Experiment(Environment Env, Population P) { // 変数初期化 Configuration.T = 0; ActionSet PreviousAS = null; double PreviousRho = 0; State PreviousS = null; // stdlist収束 bool ConvergenceStelist = false; // 移動平均計算用 double[] RhoArray = new double[Configuration.Iteration]; int[] Num = new int[Configuration.Iteration]; //double[] Std = new double[Configuration.Iteration]; Configuration.ZeroList = new List <double>(); Configuration.OneList = new List <double>(); List <string> DataList = Env.GetDataList(); List <string> DistinctDataList = DataList.Distinct().ToList(); int DistinctDataNum = DistinctDataList.Count(); // 提案手法 入力データ個数分の分散 Configuration.Stdlist = new StdList[DistinctDataNum]; // 収束した VTの値を保存する ちょう Configuration.ConvergentedVT = new StdList[DistinctDataNum]; for (int i = 0; i < DistinctDataNum; i++) { Configuration.ConvergentedVT[i] = new StdList(DistinctDataList[i], '0'); //Configuration.ConvergentedVT[i * 4 + 1] = new StdList(i, '1'); } for (int i = 0; i < DistinctDataNum; i++) { Configuration.Stdlist[i] = new StdList(DistinctDataList[i], '0'); //Configuration.Stdlist[i * 4 + 1] = new StdList( i, '1' ); } // 実験1a ノイズを既知のものとして扱う if (Configuration.ASName == "WellKnown") { Configuration.Epsilon_0 += Configuration.NoiseWidth; } Configuration.Problem.WriteLine("state ,iter,P , cl.M ,cl.Epsilon , cl.F , cl.N , cl.Exp , cl.Ts ,cl.As , cl.Kappa ,cl.Epsilon_0 , cl.St , cl.GenerateTime"); StreamWriter goodsleep1 = new StreamWriter("./goodsleep_rule1.csv"); goodsleep1.WriteLine("state ,iter,P , cl.M ,cl.Epsilon , cl.F , cl.N , cl.Exp , cl.Ts ,cl.As , cl.Kappa ,cl.Epsilon_0 , cl.St , cl.GenerateTime"); StreamWriter goodsleep2 = new StreamWriter("./goodsleep_rule2.csv"); goodsleep2.WriteLine("state ,iter,P , cl.M ,cl.Epsilon , cl.F , cl.N , cl.Exp , cl.Ts ,cl.As , cl.Kappa ,cl.Epsilon_0 , cl.St , cl.GenerateTime"); StreamWriter badsleep = new StreamWriter("./badsleep_rule.csv"); badsleep.WriteLine("state ,iter,P , cl.M ,cl.Epsilon , cl.F , cl.N , cl.Exp , cl.Ts ,cl.As , cl.Kappa ,cl.Epsilon_0 , cl.St , cl.GenerateTime"); // メインループ #region main roop while (Configuration.T < Configuration.Iteration) { // VTの収束 if (!Configuration.IsConvergenceVT) { bool flag = true; //入力データのSLが収束すれば、VTが収束とみなす。 foreach (StdList SL in Configuration.Stdlist) { if (flag && !SL.IsConvergenceSigma()) { flag = false; break; } } if (flag) // 初めてTrue { Configuration.IsConvergenceVT = true; //収束したVTを保存する for (int i = 0; i < DistinctDataList.Count; i++) { Configuration.ConvergentedVT[i].M = Configuration.Stdlist[i].M; //Configuration.ConvergentedVT[i * 4+1].M = Configuration.Stdlist[i * 2+1].M; Configuration.ConvergentedVT[i].S = Configuration.Stdlist[i].S; //Configuration.ConvergentedVT[i * 4 + 1].S = Configuration.Stdlist[i*2+1].S; Configuration.ConvergentedVT[i].T = Configuration.Stdlist[i].T; //Configuration.ConvergentedVT[i * 4 + 1].T = Configuration.Stdlist[i * 2 + 1].T; } // [P]の全てを新しい基準で再評価 foreach (Classifier C in P.CList) { // 加重平均 double ST = 0; int SumT = 0; foreach (StdList SL in Configuration.Stdlist) { if (SL.IsIncluded(C.C.state)) { ST += SL.S * SL.T; SumT += SL.T; } } ST /= SumT; SigmaNormalClassifier SNC = (SigmaNormalClassifier)C; C.Epsilon_0 = ST + Configuration.Epsilon_0; if (C.Exp > 2) { C.Epsilon = SNC.EpsilonList[0]; } } } } State S = Env.GetState(); // MatchSet生成 MatchSet M = new NormalMatchSet(S, P); foreach (Classifier cl in M.CList) { if (cl.C.state[4] == '2' & cl.C.state[7] == '#')//"bath2 rehabi# or bath# rehabi0" { goodsleep1.WriteLine(cl.C.state + "," + Configuration.T + "," + cl.P + "," + cl.M + "," + cl.Epsilon + "," + cl.F + "," + cl.N + "," + cl.Exp + "," + cl.Ts + "," + cl.As + "," + cl.Kappa + "," + cl.Epsilon_0 + "," + cl.St + "," + cl.GenerateTime); } if (cl.C.state[4] == '#' & cl.C.state[7] == '0')//"bath2 rehabi# or bath# rehabi0" { goodsleep2.WriteLine(cl.C.state + "," + Configuration.T + "," + cl.P + "," + cl.M + "," + cl.Epsilon + "," + cl.F + "," + cl.N + "," + cl.Exp + "," + cl.Ts + "," + cl.As + "," + cl.Kappa + "," + cl.Epsilon_0 + "," + cl.St + "," + cl.GenerateTime); } } foreach (Classifier cl in P.CList) { if (cl.C.state[4] == '0' & cl.C.state[7] == '1')//"bath0 rehabi1" { badsleep.WriteLine(cl.C.state + "," + Configuration.T + "," + cl.P + "," + cl.M + "," + cl.Epsilon + "," + cl.F + "," + cl.N + "," + cl.Exp + "," + cl.Ts + "," + cl.As + "," + cl.Kappa + "," + cl.Epsilon_0 + "," + cl.St + "," + cl.GenerateTime); } } // ActionSetはただMをコピーするだけ,アクションがないから ActionSet AS; if (Configuration.ASName == "CS") { AS = new ConditionSigmaActionSet(M.CList); } else { AS = new NormalActionSet(M.CList); /*M.MatchAction(Action))*/; } char Action = '0';//action ないから、全部0にする double Rho = Env.ExecuteAction(Action); StdList Sigma = null; // 提案手法 分散の計算 foreach (StdList SL in Configuration.Stdlist) { if ((SL.C == S.state) /*&& ( SL.A == Action )*/) { // situationの分散取得 SL.Update(Rho); Sigma = SL; } } // 提案手法(中田) if (Configuration.ASName == "CS") { Configuration.URE_Epsilon0 = -1; // 最小値 double d = Configuration.Rho; foreach (SigmaNormalClassifier C in AS.CList) { if (d > C.S && C.IsConvergenceEpsilon()) { d = Math.Sqrt(C.S / (C.St - 1)); } } Configuration.URE_Epsilon0 = d; } //chou 1000回の報酬平均を保存 if (Configuration.T < 1000) { Configuration.RewardList.Add(Rho); } if (Configuration.T == 1000) { Configuration.RewardAverage = Configuration.RewardList.Mean(); } // マルチステップ問題の終着またはシングルステップ問題 if (Env.Eop) { double p = Rho; AS.Update(P, p, Sigma); AS.RunGA(S, P); //komine PreviousAS = null; } else { PreviousAS = AS; PreviousRho = Rho; PreviousS = S; } Num[Configuration.T] = P.CList.Count(); //Std[Configuration.T] = Math.Sqrt( Stdlist[20].Sigma / (Stdlist[20].T - 1)); if (Configuration.StartTime < 0 && Configuration.FlagSigma && Configuration.FlagEpsilon) { Configuration.StartTime = Configuration.T; } Configuration.FlagSigma = Configuration.FlagEpsilon = false; if (!ConvergenceStelist && (Configuration.ASName == "CS" || Configuration.ASName == "MaxCS" || Configuration.ASName == "Max" || Configuration.ASName == "Updatee0CS")) { int i = 1; foreach (StdList SL in Configuration.Stdlist) { i *= (SL.IsConvergenceSigma() ? 1 : 0); } if (i == 1) { StreamWriter stdSw = new StreamWriter("./ConvergenceVT_" + Configuration.T + "_" + Configuration.Seed + "CnoiseWidth" + Configuration.NoiseWidth + "AS_" + Configuration.ASName + "ET_" + Configuration.ExpThreshold + "DS_" + Configuration.DifferenceSigma + "LS_" + Configuration.LookBackSigma + "DE_" + Configuration.DifferenceEpsilon + "LE_" + Configuration.LookBackEpsilon + ".csv", true, System.Text.Encoding.GetEncoding("shift_jis")); stdSw.WriteLine("condition,action,sigma,average,time,convergence"); foreach (StdList SL in Configuration.Stdlist) { stdSw.WriteLine(SL.C + "," + SL.A + "," + SL.S + "," + SL.M + "," + SL.T + "," + (SL.IsConvergenceSigma() ? 1 : 0)); // 1 : 収束 } stdSw.Close(); ConvergenceStelist = true; } } Configuration.T++; Console.WriteLine(Configuration.T); } P.Show(); #endregion goodsleep1.Close(); goodsleep2.Close(); badsleep.Close(); Configuration.Problem.Close(); P.Compact(); //P.Show(); if ((Configuration.ASName == "CS" || Configuration.ASName == "MaxCS" || Configuration.ASName == "Max" || Configuration.ASName == "Updatee0CS")) { StreamWriter stdSw = new StreamWriter("./VarianceTable_" + Configuration.T + "_" + Configuration.Seed + "CnoiseWidth" + Configuration.NoiseWidth + "AS_" + Configuration.ASName + "ET_" + Configuration.ExpThreshold + "DS_" + Configuration.DifferenceSigma + "LS_" + Configuration.LookBackSigma + "DE_" + Configuration.DifferenceEpsilon + "LE_" + Configuration.LookBackEpsilon + ".csv", true, System.Text.Encoding.GetEncoding("shift_jis")); stdSw.WriteLine("condition,action,sigma,time,convergence,convergencetime"); foreach (StdList SL in Configuration.Stdlist) { stdSw.WriteLine(SL.C + "," + SL.A + "," + SL.S + "," + SL.T + "," + (SL.IsConvergenceSigma() ? 1 : 0) + "," + SL.ConvergenceTime); // 1 : 収束 } stdSw.Close(); } //LD.Close(); StreamWriter sw = new StreamWriter("./performance_" + Configuration.Seed + "CnoiseWidth_" + Configuration.NoiseWidth + "AS_" + Configuration.ASName + "ET_" + Configuration.ExpThreshold + "DS_" + Configuration.DifferenceSigma + "LS_" + Configuration.LookBackSigma + "DE_" + Configuration.DifferenceEpsilon + "LE_" + Configuration.LookBackEpsilon + ".csv", true, System.Text.Encoding.GetEncoding("shift_jis")); sw.WriteLine("Performance,PopulationSize," + Configuration.StartTime); for (int i = 0; i < RhoArray.Count() - Configuration.SMA; i++) { double R = 0; double N = 0; for (int j = 0; j < Configuration.SMA; j++) { R += RhoArray[i + j]; N += Num[i + j]; } R /= Configuration.SMA; N /= Configuration.SMA; sw.WriteLine(R + "," + N); } sw.Close(); StreamWriter Zerosw = new StreamWriter("./Zero_per_" + Configuration.Seed + "CnoiseWidth_" + Configuration.NoiseWidth + "AS_" + Configuration.ASName + "ET_" + Configuration.ExpThreshold + "DS_" + Configuration.DifferenceSigma + "LS_" + Configuration.LookBackSigma + "DE_" + Configuration.DifferenceEpsilon + "LE_" + Configuration.LookBackEpsilon + ".csv", true, System.Text.Encoding.GetEncoding("shift_jis")); Zerosw.WriteLine("Performance,dummy," + Configuration.StartTime); for (int i = 0; i < Configuration.ZeroList.Count() - Configuration.SMA; i++) { double R = 0; double N = 0; for (int j = 0; j < Configuration.SMA; j++) { R += Configuration.ZeroList[i + j]; N += Num[i + j]; } R /= Configuration.SMA; N /= Configuration.SMA; Zerosw.WriteLine(R + "," + N); } Zerosw.Close(); StreamWriter Onesw = new StreamWriter("./One_per_" + Configuration.Seed + "CnoiseWidth_" + Configuration.NoiseWidth + "AS_" + Configuration.ASName + "ET_" + Configuration.ExpThreshold + "DS_" + Configuration.DifferenceSigma + "LS_" + Configuration.LookBackSigma + "DE_" + Configuration.DifferenceEpsilon + "LE_" + Configuration.LookBackEpsilon + ".csv", true, System.Text.Encoding.GetEncoding("shift_jis")); Onesw.WriteLine("Performance,dummy," + Configuration.StartTime); for (int i = 0; i < Configuration.OneList.Count() - Configuration.SMA; i++) { double R = 0; double N = 0; for (int j = 0; j < Configuration.SMA; j++) { R += Configuration.OneList[i + j]; N += Num[i + j]; } R /= Configuration.SMA; N /= Configuration.SMA; Onesw.WriteLine(R + "," + N); } Onesw.Close(); Configuration.ESW.Close(); //Configuration.Problem.Close(); System.IO.Directory.SetCurrentDirectory("../"); StreamWriter swP = new StreamWriter("PPP.csv", true, System.Text.Encoding.GetEncoding("shift_jis")); swP.WriteLine(Configuration.NoiseWidth + "," + Configuration.ASName + "," + P.CList.Count()); swP.Close(); }