Esempio n. 1
0
        public static ClusteringSolution CreateACOClusters_MB(int seed, Dataset dataset, int clustersNumber, ISimilarityMeasure similarityMeasure, int maxIterations, int colonySize, int convergenceIterations, bool fireEvents, bool performLocalSearch)
        {
            DataMining.Utilities.RandomUtility.Initialize(seed);
            DefaultHeuristicCalculator <int> calculator  = new DefaultHeuristicCalculator <int>();
            ClusteringMBInvalidator          invalidator = new ClusteringMBInvalidator();

            DataMining.ProximityMeasures.IClusteringQualityMeasure measure = new CohesionClusteringMeasure();
            ClusteringQualityEvaluator cohesionEvaluator = new ClusteringQualityEvaluator(measure);
            KMeansLocalSearch          localSearch       = new KMeansLocalSearch(dataset, 1, similarityMeasure, cohesionEvaluator);

            ACO.ProblemSpecifics.ISolutionQualityEvaluator <int> evaluator = new ClusteringQualityEvaluator(measure);
            Problem <int> problem = new Problem <int>(invalidator, calculator, evaluator, localSearch);


            ACOClustering_MB antClustering = new ACOClustering_MB(maxIterations, colonySize, convergenceIterations, problem, clustersNumber, similarityMeasure, dataset, performLocalSearch);

            antClustering.OnPostColonyIteration += new EventHandler(antClustering_OnPostColonyIteration);

            return(antClustering.CreateClusters());
        }
Esempio n. 2
0
        public static void TestACOCluster_MBThenBMN()
        {
            int seed = (int)DateTime.Now.Ticks;

            Console.WriteLine("Start");

            string  datasetFile = folderPath + "\\" + datasetName + ".arff";
            Dataset trainingSet = ArffHelper.LoadDatasetFromArff(datasetFile);
            Dataset testingSet  = ArffHelper.LoadDatasetFromArff(datasetFile);

            double avgQualiy = 0;

            for (int i = 0; i < 1; i++)
            {
                DataMining.ProximityMeasures.ISimilarityMeasure similarityMeasure        = new DataMining.ProximityMeasures.ClassBasedSimilarityMeasure(trainingSet);
                DataMining.ClassificationMeasures.IClassificationQualityMeasure accuracy = new DataMining.ClassificationMeasures.AccuracyMeasure();
                DataMining.Algorithms.IClassificationAlgorithm naive = new NaiveBayesAlgorithm();

                DefaultHeuristicCalculator <int> calculator  = new DefaultHeuristicCalculator <int>();
                ClusteringMBInvalidator          invalidator = new ClusteringMBInvalidator();
                DataMining.ProximityMeasures.IClusteringQualityMeasure measure = new CohesionClusteringMeasure();
                ClusteringQualityEvaluator cohesionEvaluator = new ClusteringQualityEvaluator(measure);
                KMeansLocalSearch          localSearch       = new KMeansLocalSearch(trainingSet, 1, similarityMeasure, cohesionEvaluator);
                ACO.ProblemSpecifics.ISolutionQualityEvaluator <int> evaluator = new ClusteringQualityEvaluator(measure);
                Problem <int> problem = new Problem <int>(invalidator, calculator, evaluator, localSearch);

                DataMining.Algorithms.IClusteringAlgorithm AntClustering = new ACOClustering_MB(1000, 10, 10, problem, 6, similarityMeasure, true);
                DataMining.Model.IClassifier cBMNClassifier = SingleTest.CreateClusteringBMNClassifier(seed, 6, trainingSet, similarityMeasure, accuracy, AntClustering, naive, true);
                double quality = SingleTest.TestClassifier(cBMNClassifier, testingSet, accuracy);
                Console.WriteLine("Quality: " + quality.ToString());
                avgQualiy += quality;
            }

            Console.WriteLine(avgQualiy / 10);
            Console.WriteLine("End");
        }