Exemple #1
0
 public Plane GetPlane(double t) => Misc.PlaneFromNormalAndYAxis(
     Centreline.PointAt(t),
     Centreline.TangentAt(t),
     Orientation.GetOrientation(Centreline, t));
Exemple #2
0
        /// <summary>
        /// Generate a series of planes on the glulam cross-section. TODO: Re-implement as GlulamOrientation function
        /// </summary>
        /// <param name="N">Number of planes to extract.</param>
        /// <param name="extension">Extension of the centreline curve</param>
        /// <param name="frames">Output cross-section planes.</param>
        /// <param name="parameters">Output t-values along centreline curve.</param>
        /// <param name="interpolation">Type of interpolation to use (default is Linear).</param>
        public override void GenerateCrossSectionPlanes(int N, out Plane[] frames, out double[] parameters, GlulamData.Interpolation interpolation = GlulamData.Interpolation.LINEAR)
        {
            Curve curve = Centreline;

            double multiplier = RhinoMath.UnitScale(Rhino.RhinoDoc.ActiveDoc.ModelUnitSystem, UnitSystem.Millimeters);

            //PolylineCurve discrete = curve.ToPolyline(Glulam.Tolerance * 10, Glulam.AngleTolerance, 0.0, 0.0);
            PolylineCurve discrete = curve.ToPolyline(multiplier * Tolerance, AngleTolerance, multiplier * MininumSegmentLength, curve.GetLength() / MinimumNumSegments);

            if (discrete.TryGetPolyline(out Polyline discrete2))
            {
                N          = discrete2.Count;
                parameters = new double[N];

                for (int i = 0; i < N; ++i)
                {
                    curve.ClosestPoint(discrete2[i], out parameters[i]);
                }
            }
            else
            {
                parameters = curve.DivideByCount(N - 1, true).ToArray();
            }

            //frames = parameters.Select(x => GetPlane(x)).ToArray();
            //return;

            frames = new Plane[parameters.Length];

            var vectors = Orientation.GetOrientations(curve, parameters);

            Plane temp;

            for (int i = 0; i < parameters.Length; ++i)
            {
                temp = Misc.PlaneFromNormalAndYAxis(
                    curve.PointAt(parameters[i]),
                    curve.TangentAt(parameters[i]),
                    vectors[i]);

                if (temp.IsValid)
                {
                    frames[i] = temp;
                }
                else
                {
                    throw new Exception(string.Format("Plane is invalid: vector {0} tangent {1}", vectors[i], curve.TangentAt(parameters[i])));
                }
                // TODO: Make back-up orientation direction in this case.
            }

            return;

            N = Math.Max(N, 2);

            frames = new Plane[N];
            Curve  CL;
            double extension = 0;

            if (Centreline.IsClosed)
            {
                CL = Centreline.DuplicateCurve();
            }
            else
            {
                CL = Centreline.Extend(CurveEnd.Both, extension, CurveExtensionStyle.Smooth);
            }

            parameters = CL.DivideByCount(N - 1, true);

            GlulamOrientation TempOrientation = Orientation.Duplicate();

            TempOrientation.Remap(Centreline, CL);

            for (int i = 0; i < N; ++i)
            {
                Vector3d v = TempOrientation.GetOrientation(CL, parameters[i]);
                frames[i] = tas.Core.Util.Misc.PlaneFromNormalAndYAxis(CL.PointAt(parameters[i]), CL.TangentAt(parameters[i]), v);
            }

            return;

            /*
             * double[] ft = new double[Frames.Count];
             * double[] fa = new double[Frames.Count];
             *
             * Plane temp;
             * for (int i = 0; i < Frames.Count; ++i)
             * {
             *  CL.PerpendicularFrameAt(Frames[i].Item1, out temp);
             *  ft[i] = Frames[i].Item1;
             *  //fa[i] = Math.Acos(temp.YAxis * Frames[i].Item2.YAxis);
             *  fa[i] = Vector3d.VectorAngle(temp.YAxis, Frames[i].Item2.YAxis, Frames[i].Item2);
             * }
             *
             * for (int i = 1; i < fa.Length; ++i)
             * {
             *  if (fa[i] - fa[i - 1] > Math.PI)
             *      fa[i] -= Constants.Tau;
             *  else if (fa[i] - fa[i - 1] < -Math.PI)
             *      fa[i] += Constants.Tau;
             * }
             *
             * int res;
             * int max = ft.Length - 1;
             * double mu;
             *
             * double[] angles = new double[N];
             *
             * if (Frames.Count < 3)
             *  interpolation = GlulamData.Interpolation.LINEAR;
             *
             * switch (interpolation)
             * {
             *  case (GlulamData.Interpolation.HERMITE): // Hermite Interpolation
             *      for (int i = 0; i < N; ++i)
             *      {
             *          if (t[i] < ft[0])
             *          {
             *              angles[i] = fa[0];
             *              continue;
             *          }
             *          else if (t[i] > ft.Last())
             *          {
             *              angles[i] = fa.Last();
             *              continue;
             *          }
             *
             *          res = Array.BinarySearch(ft, t[i]);
             *          if (res < 0)
             *          {
             *              res = ~res;
             *              res--;
             *          }
             *
             *          if (res == 0 && res < max - 1)
             *          {
             *              mu = (t[i] - ft[0]) / (ft[1] - ft[0]);
             *              angles[i] = Interpolation.HermiteInterpolate(fa[0], fa[0], fa[1], fa[2], mu, 0, 0);
             *          }
             *          else if (res > 0 && res < max - 1)
             *          {
             *              mu = (t[i] - ft[res]) / (ft[res + 1] - ft[res]);
             *              angles[i] = Interpolation.HermiteInterpolate(fa[res - 1], fa[res], fa[res + 1], fa[res + 2], mu, 0, 0);
             *
             *          }
             *          else if (res > 0 && res < max)
             *          {
             *              mu = (t[i] - ft[res]) / (ft[res + 1] - ft[res]);
             *              angles[i] = Interpolation.HermiteInterpolate(fa[res - 1], fa[res], fa[res + 1], fa[res + 1], mu, 0, 0);
             *          }
             *          else if (res == max)
             *          {
             *              angles[i] = fa[res];
             *          }
             *
             *          else
             *              continue;
             *      }
             *      break;
             *
             *  case (GlulamData.Interpolation.CUBIC): // Cubic Interpolation
             *      for (int i = 0; i < N; ++i)
             *      {
             *          if (t[i] <= ft[0])
             *          {
             *              angles[i] = fa[0];
             *              continue;
             *          }
             *          else if (t[i] >= ft.Last())
             *          {
             *              angles[i] = fa.Last();
             *              continue;
             *          }
             *
             *          res = Array.BinarySearch(ft, t[i]);
             *          if (res < 0)
             *          {
             *              res = ~res;
             *              res--;
             *          }
             *
             *          if (res == 0 && res < max - 1)
             *          {
             *              mu = (t[i] - ft[0]) / (ft[1] - ft[0]);
             *              angles[i] = Interpolation.CubicInterpolate(fa[0], fa[0], fa[1], fa[2], mu);
             *          }
             *          else if (res > 0 && res < max - 1)
             *          {
             *              mu = (t[i] - ft[res]) / (ft[res + 1] - ft[res]);
             *              angles[i] = Interpolation.CubicInterpolate(fa[res - 1], fa[res], fa[res + 1], fa[res + 2], mu);
             *
             *          }
             *          else if (res > 0 && res < max)
             *          {
             *              mu = (t[i] - ft[res]) / (ft[res + 1] - ft[res]);
             *              angles[i] = Interpolation.CubicInterpolate(fa[res - 1], fa[res], fa[res + 1], fa[res + 1], mu);
             *          }
             *          else if (res == max)
             *          {
             *              angles[i] = fa[res];
             *          }
             *
             *          else
             *              continue;
             *      }
             *      break;
             *
             *  default: // Default linear interpolation
             *      for (int i = 0; i < N; ++i)
             *      {
             *          res = Array.BinarySearch(ft, t[i]);
             *          if (res < 0)
             *          {
             *              res = ~res;
             *              res--;
             *          }
             *          if (res >= 0 && res < max)
             *          {
             *              if (ft[res + 1] - ft[res] == 0)
             *                  mu = 0.5;
             *              else
             *                  mu = Math.Min(1.0, Math.Max(0, (t[i] - ft[res]) / (ft[res + 1] - ft[res])));
             *              angles[i] = Interpolation.Lerp(fa[res], fa[res + 1], mu);
             *          }
             *          else if (res < 0)
             *              angles[i] = fa[0];
             *          else if (res >= max)
             *              angles[i] = fa[max];
             *      }
             *      break;
             * }
             *
             * for (int i = 0; i < N; ++i)
             * {
             *  CL.PerpendicularFrameAt(t[i], out temp);
             *  temp.Transform(Rhino.Geometry.Transform.Rotation(angles[i], temp.ZAxis, temp.Origin));
             *  planes[i] = temp;
             * }
             */
        }