Inheritance: INeatExperiment
Exemple #1
0
        void RunExperiment(string XMLFile, string filename)
        {
            _filename = filename;
            _experiment = new SocialExperiment();

            // Write the header for the results file in CSV format.
            using (TextWriter writer = new StreamWriter(_filename))
                writer.WriteLine("Generation,Average,Best,Updates");

            using (TextWriter writer = new StreamWriter(_filename.Replace(".csv", "_diversity_after.csv")))
                writer.WriteLine("Generation,Orientation Variance,Velocity Variance");

            using (TextWriter writer = new StreamWriter(_filename.Replace(".csv", "_diversity_before.csv")))
                writer.WriteLine("Generation,Orientation Variance,Velocity Variance");

            // Load the XML configuration file
            XmlDocument xmlConfig = new XmlDocument();
            xmlConfig.Load(XMLFile);
            _experiment.Initialize("EgalitarianSocialLearning", xmlConfig.DocumentElement);
            _experiment.TrialId = _trialNum;

            // Create the evolution algorithm and attach the update event.
            _ea = _experiment.CreateEvolutionAlgorithm();
            _ea.UpdateScheme = new SharpNeat.Core.UpdateScheme(1);
            _ea.UpdateEvent += new EventHandler(_ea_UpdateEvent);

            _experiment.Evaluator.TrialId = _trialNum;
            _experiment.Evaluator.DiversityFile = _filename.Replace(".csv", "_diversity.csv");

            // Start algorithm (it will run on a background thread).
            _ea.StartContinue();
        }
Exemple #2
0
        private void GenomesToAcceptability(IList <TGenome> genomeList)
        {
            string TEMP_NETWORK_FILE = string.Format("____temp{0}____network.xml", TrialId);

            var neatGenomeParams = new NeatGenomeParameters()
            {
                ActivationFn = PlainSigmoid.__DefaultInstance,
                InitialInterconnectionsProportion = 1
            };

            int inputs = _world.PlantTypes.Count() * World.SENSORS_PER_OBJECT_TYPE
                         + _world.Predators.Count() * World.SENSORS_PER_OBJECT_TYPE
                         + 1;
            int outputs = 2;

            var factory = new NeatGenomeFactory(inputs, outputs, neatGenomeParams);

            for (int i = 0; i < _agents.Length; i++)
            {
                // Decode the genome.
                IBlackBox phenome             = _genomeDecoder.Decode(genomeList[i]);
                IAcceptabilityFunction accept = new RecurrentNeuralAcceptability(phenome);

                // Check that the genome is valid.
                if (phenome == null)
                {
                    Console.WriteLine("Couldn't decode genome {0}!", i);
                    _agents[i] = new SpinningAgent(i);
                    continue;
                }

                // Create a feed forward network with 10 hidden nodes and random weights
                SocialExperiment.CreateNetwork(TEMP_NETWORK_FILE, inputs, outputs);
                using (var xr = XmlReader.Create(TEMP_NETWORK_FILE))
                {
                    var controllerGenome  = NeatGenomeXmlIO.ReadCompleteGenomeList(xr, false, factory)[0];
                    var controllerPhenome = _genomeDecoder.Decode((TGenome)controllerGenome);
                    _agents[i] = new SocialAgent(i, _genomeList[i].SpecieIdx, controllerPhenome, _agentsNavigate, _agentsHide, accept)
                    {
                        MemorySize = CurrentMemorySize
                    };
                    var network = (FastCyclicNetwork)controllerPhenome;
                    network.Momentum             = ((SocialAgent)_agents[i]).Momentum;
                    network.BackpropLearningRate = ((SocialAgent)_agents[i]).LearningRate;
                }
            }

            File.Delete(TEMP_NETWORK_FILE);
        }
Exemple #3
0
        static void RunTrial(int offset)
        {
            RESULTS_FILE = EXPERIMENTS_DIR + RESULTS_FILE_BASE + offset + ".csv";
            _random = new FastRandom();

            _experiment = new SocialExperiment();
            XmlDocument xmlConfig = new XmlDocument();
            xmlConfig.Load(CONFIG_FILE);
            _experiment.Initialize("SimpleEvolution", xmlConfig.DocumentElement);
            _experiment.NeatGenomeParameters.AddConnectionMutationProbability = 0;
            _experiment.NeatGenomeParameters.AddNodeMutationProbability = 0;
            _experiment.NeatGenomeParameters.DeleteConnectionMutationProbability = 0;
            
            SocialExperiment.CreateNetwork(FEED_FORWARD_NETWORK_FILE, _experiment.InputCount, _experiment.OutputCount);

            // Record the changes at each step
            _experiment.World.Stepped += new social_learning.World.StepEventHandler(World_Stepped);

            // Read in the seed genome from file. This is the prototype for our other population of networks.
            var seed = _experiment.LoadPopulation(XmlReader.Create(FEED_FORWARD_NETWORK_FILE))[0];

            // Create a genome factory with our neat genome parameters object and the appropriate number of input and output neuron genes.
            IGenomeFactory<NeatGenome> genomeFactory = _experiment.CreateGenomeFactory();

            // Create an initial population of randomly generated genomes.
            List<NeatGenome> genomeList = genomeFactory.CreateGenomeList(_experiment.DefaultPopulationSize, 0, seed);

            // Randomize the genomes
            RandomizeGenomes(genomeList);

            // Create genome decoder.
            IGenomeDecoder<NeatGenome, IBlackBox> genomeDecoder = _experiment.CreateGenomeDecoder();

            // Create the evaluator that will handle the simulation
            _evaluator = new ForagingEvaluator<NeatGenome>(genomeDecoder, _experiment.World, AgentTypes.Social)
                {
                    MaxTimeSteps = 200000UL,
                    BackpropEpochsPerExample = 1
                };

            using (TextWriter writer = new StreamWriter(RESULTS_FILE))
                writer.WriteLine("Step,Best,Average");

            // Start the simulation
            _evaluator.Evaluate(genomeList);
        }
Exemple #4
0
        static void Main(string[] args)
        {
            _random = new FastRandom();

            _experiment = new SocialExperiment();
            XmlDocument xmlConfig = new XmlDocument();
            xmlConfig.Load(CONFIG_FILE);
            _experiment.Initialize("SimpleEvolution", xmlConfig.DocumentElement);
            _experiment.NeatGenomeParameters.AddConnectionMutationProbability = 0;
            _experiment.NeatGenomeParameters.AddNodeMutationProbability = 0;
            _experiment.NeatGenomeParameters.DeleteConnectionMutationProbability = 0;

            SocialExperiment.CreateNetwork(FEED_FORWARD_NETWORK_FILE, _experiment.InputCount, 20, _experiment.OutputCount);

            // Record the changes at each step
            _experiment.World.Stepped += new social_learning.World.StepEventHandler(World_Stepped);

            // Read in the teacher genome from file.
            var agentGenome = _experiment.LoadPopulation(XmlReader.Create(FEED_FORWARD_NETWORK_FILE));

            // Create genome decoder.
            IGenomeDecoder<NeatGenome, IBlackBox> genomeDecoder = _experiment.CreateGenomeDecoder();

            // Create the evaluator that will handle the simulation
            _evaluator = new ForagingEvaluator<NeatGenome>(genomeDecoder, _experiment.World, AgentTypes.QLearning)
            {
                MaxTimeSteps = 50000000UL,
                BackpropEpochsPerExample = 1
            };

            using (TextWriter writer = new StreamWriter(RESULTS_FILE))
                writer.WriteLine("Step,Score");

            // Start the simulation
            _evaluator.Evaluate(agentGenome);
        }
Exemple #5
0
        private void evolve_Click(object sender, EventArgs e)
        {
            if (btnEvolve.Text == "Stop!")
            {
                stopEvolution();
                return;
            }
            running = true;
            _experiment = new SocialExperiment();
            
            // Load config XML.
            XmlDocument xmlConfig = new XmlDocument();
            xmlConfig.Load(_configFile);
            _experiment.Initialize("SimpleEvolution", xmlConfig.DocumentElement);
            _experiment.PlantLayout = _plantLayout;

            _experiment.World.Changed += new World.ChangedEventHandler(world_Changed);
            _experiment.World.AgentEaten += new World.AgentEatenHandler(World_AgentEaten);

            btnEvolve.Text = "Stop!";

            // Start the evolution
            if (_configFile == QLEARNING_CONFIG_FILE)
            {
                qLearningThread = new Thread(new ThreadStart(startQLearning));
                qLearningThread.Start();
            }
            else
            {
                qLearningThread = new Thread(new ThreadStart(startEvolution));
                qLearningThread.Start();
            }
        }