Exemple #1
0
        private static void RunCalculationApplication(string exchangeFilePath, BionicSolverSettings settings)
        {
            string argumentsFormat = settings.CalcApplicationCommandLineArgumentsFormat.Trim();
            string arguments       = string.Format(argumentsFormat, "\"" + exchangeFilePath + "\"");

            ProcessStartInfo externalAppInfo = new ProcessStartInfo();

            externalAppInfo.FileName        = settings.CalcApplicationPath;
            externalAppInfo.Arguments       = " " + arguments;
            externalAppInfo.UseShellExecute = false;

            Process extAppProc = Process.Start(externalAppInfo);

            extAppProc.WaitForExit();
        }
Exemple #2
0
        private string CreateExchangeFile(Model optModel, BionicSolverSettings settings)
        {
            string exchangeFilePath = Path.Combine(Path.GetDirectoryName(settings.CalcApplicationPath), "temp.xml");

            modelProvider.Save(optModel, exchangeFilePath);

            // Wait for the file to be created and written to disk
            // TODO: Looks like a dirty hack. Maybe there is more elegant solution...
            while (true)
            {
                if (File.Exists(exchangeFilePath))
                {
                    break;
                }

                Thread.Sleep(500);
            }

            return(exchangeFilePath);
        }
Exemple #3
0
        public void Solve(BionicModel model, BionicSolverSettings settings)
        {
            if (model == null)
            {
                throw new ArgumentNullException("model");
            }

            if (settings == null)
            {
                throw new ArgumentNullException("settings");
            }

            OnSolverStarting(new EventArgs());

            IInitialPopulationGenerator initializer = InitialPopulationGeneratorFactory.CreateInitialPopulationGenerator();
            ISelector selector = SelectorFactory.CreateSelector();
            IBreeder  breeder  = BreederFactory.CreateBreeder();

            // 1. Zeroing generation number
            model.CurrentGeneration = 0;

            OnSolverStarted(new EventArgs());

            // 2. Creating initial population
            CopyIndividuals(initializer.GenerateInitialPopulation(settings.InitialPopulationSize, model.Attributes), model.CurrentPopulation);
            CalculateFitness(model, model.CurrentPopulation, settings);
            model.ApplyFunctionalConstraints();

            OnPopulationUpdated(new EventArgs());

            while (model.CurrentGeneration < settings.MaxGenerations)
            {
                // 3. Selecting most fit individuals
                IEnumerable <Individual> fitIndividuals = selector.Select(model.CurrentPopulation, model.FitnessCriterion, settings.SelectionCap);
                if (fitIndividuals.Count() == 0)
                {
                    OnSolverFinished(new SolverFinishedEventArgs("All individuals are inactive"));
                    return;
                }

                // Selected subpopulation will contain only selected active individuals
                Population selectedSubPopulation = new Population(fitIndividuals.Count());
                foreach (Individual fitIndividual in fitIndividuals)
                {
                    selectedSubPopulation.Add(fitIndividual);
                }

                // 4. Breeding the selected ones
                IEnumerable <Individual> descendants = breeder.Breed(selectedSubPopulation, model.Attributes,
                                                                     settings.DescendantsRangePercent, settings.DescendantsNum, model.CurrentGeneration + 1);
                if (descendants.Count() == 0)
                {
                    OnSolverFinished(new SolverFinishedEventArgs("No descendants was created"));
                    return;
                }

                // Descendants subpopulation will contain only new individuals
                Population descendantsSubPopulation = new Population(descendants.Count());
                foreach (Individual descendant in descendants)
                {
                    descendantsSubPopulation.Add(descendant);
                }

                // 5. Calculating fitness of the descendants
                CalculateFitness(model, descendantsSubPopulation, settings);
                // At this point, all descendants are still active, although
                // there may be individuals that don't fit f. c.

                // 6. Forming new population
                if (settings.ApplyElitism)
                {
                    // First unite descendants with their parents (elitism)
                    // We can do this without fear of ID collision because this
                    // was taken into account on the breeding step
                    CopyIndividuals(descendantsSubPopulation, selectedSubPopulation);

                    // Now this united population becomes current, we just
                    // throw away old individuals
                    model.CurrentPopulation.Clear();
                    CopyIndividuals(selectedSubPopulation, model.CurrentPopulation);
                }
                else
                {
                    // We throw away parents and old individuals,
                    // descendants are taking over the place
                    model.CurrentPopulation.Clear();
                    CopyIndividuals(descendantsSubPopulation, model.CurrentPopulation);
                }

                model.ApplyFunctionalConstraints();

                // 7. Updating current generation number
                model.CurrentGeneration = model.CurrentPopulation.Max(ind => ind.Value.GenerationNumber);

                OnPopulationUpdated(new EventArgs());
            }

            OnSolverFinished(new SolverFinishedEventArgs());
        }
Exemple #4
0
        private void CalculateFitness(BionicModel model, Population targetPopulation, BionicSolverSettings settings)
        {
            if (model == null)
            {
                throw new ArgumentNullException("model");
            }

            if (targetPopulation == null)
            {
                throw new ArgumentNullException("targetPopulation");
            }

            BionicModel tempModel = InitTempBionicModel(model, targetPopulation);

            Model  optModel         = ModelsConverter.BionicModelToModel(tempModel);
            string exchangeFilePath = CreateExchangeFile(optModel, settings);

            // This call will wait for external application to exit
            RunCalculationApplication(exchangeFilePath, settings);

            optModel = modelProvider.Load(exchangeFilePath);
            foreach (Experiment experiment in optModel.Experiments.Values)
            {
                targetPopulation[experiment.Id].FitnessValue = experiment.CriterionValues[model.FitnessCriterion.Id];

                foreach (TId constraintId in optModel.FunctionalConstraints.Keys)
                {
                    targetPopulation[experiment.Id].ConstraintValues[constraintId] = experiment.ConstraintValues[constraintId];
                }
            }
        }