/// <summary> /// foreach edge [vid,b] connected to junction vertex vid, remove, add new vertex c, /// and then add new edge [b,c]. Optionally move c a bit back along edge from vid. /// </summary> public static void DisconnectJunction(DGraph3 graph, int vid, double shrinkFactor = 1.0) { Vector3d v = graph.GetVertex(vid); int[] nbr_verts = graph.VtxVerticesItr(vid).ToArray(); for (int k = 0; k < nbr_verts.Length; ++k) { int eid = graph.FindEdge(vid, nbr_verts[k]); graph.RemoveEdge(eid, true); if (graph.IsVertex(nbr_verts[k])) { Vector3d newpos = Vector3d.Lerp(graph.GetVertex(nbr_verts[k]), v, shrinkFactor); int newv = graph.AppendVertex(newpos); graph.AppendEdge(nbr_verts[k], newv); } } }
protected void compute_full(IEnumerable <int> Triangles, bool bIsFullMeshHint = false) { Graph = new DGraph3(); if (WantGraphEdgeInfo) { GraphEdges = new DVector <GraphEdgeInfo>(); } Vertices = new Dictionary <Vector3d, int>(); // multithreaded precomputation of per-vertex values double[] vertex_values = null; if (PrecomputeVertexValues) { vertex_values = new double[Mesh.MaxVertexID]; IEnumerable <int> verts = Mesh.VertexIndices(); if (bIsFullMeshHint == false) { MeshVertexSelection vertices = new MeshVertexSelection(Mesh); vertices.SelectTriangleVertices(Triangles); verts = vertices; } gParallel.ForEach(verts, (vid) => { vertex_values[vid] = ValueF(Mesh.GetVertex(vid)); }); VertexValueF = (vid) => { return(vertex_values[vid]); }; } foreach (int tid in Triangles) { Vector3dTuple3 tv = new Vector3dTuple3(); Mesh.GetTriVertices(tid, ref tv.V0, ref tv.V1, ref tv.V2); Index3i triVerts = Mesh.GetTriangle(tid); Vector3d f = (VertexValueF != null) ? new Vector3d(VertexValueF(triVerts.a), VertexValueF(triVerts.b), VertexValueF(triVerts.c)) : new Vector3d(ValueF(tv.V0), ValueF(tv.V1), ValueF(tv.V2)); // round f to 0 within epsilon? if (f.x < 0 && f.y < 0 && f.z < 0) { continue; } if (f.x > 0 && f.y > 0 && f.z > 0) { continue; } Index3i triEdges = Mesh.GetTriEdges(tid); if (f.x * f.y * f.z == 0) { int z0 = (f.x == 0) ? 0 : ((f.y == 0) ? 1 : 2); int i1 = (z0 + 1) % 3, i2 = (z0 + 2) % 3; if (f[i1] * f[i2] > 0) { continue; // single-vertex-crossing case, skip here and let other edges catch it } if (f[i1] == 0 || f[i2] == 0) { // on-edge case int z1 = f[i1] == 0 ? i1 : i2; if ((z0 + 1) % 3 != z1) { int tmp = z0; z0 = z1; z1 = tmp; // catch reverse-orientation cases } int e0 = add_or_append_vertex(Mesh.GetVertex(triVerts[z0])); int e1 = add_or_append_vertex(Mesh.GetVertex(triVerts[z1])); int graph_eid = Graph.AppendEdge(e0, e1, (int)TriangleCase.OnEdge); if (graph_eid >= 0 && WantGraphEdgeInfo) { add_on_edge(graph_eid, tid, triEdges[z0], new Index2i(e0, e1)); } } else { // edge/vertex case Util.gDevAssert(f[i1] * f[i2] < 0); int vert_vid = add_or_append_vertex(Mesh.GetVertex(triVerts[z0])); int i = i1, j = i2; if (triVerts[j] < triVerts[i]) { int tmp = i; i = j; j = tmp; } Vector3d cross = find_crossing(tv[i], tv[j], f[i], f[j]); int cross_vid = add_or_append_vertex(cross); add_edge_pos(triVerts[i], triVerts[j], cross); int graph_eid = Graph.AppendEdge(vert_vid, cross_vid, (int)TriangleCase.EdgeVertex); if (graph_eid >= 0 && WantGraphEdgeInfo) { add_edge_vert(graph_eid, tid, triEdges[(z0 + 1) % 3], triVerts[z0], new Index2i(vert_vid, cross_vid)); } } } else { Index3i cross_verts = Index3i.Min; int less_than = 0; for (int tei = 0; tei < 3; ++tei) { int i = tei, j = (tei + 1) % 3; if (f[i] < 0) { less_than++; } if (f[i] * f[j] > 0) { continue; } if (triVerts[j] < triVerts[i]) { int tmp = i; i = j; j = tmp; } Vector3d cross = find_crossing(tv[i], tv[j], f[i], f[j]); cross_verts[tei] = add_or_append_vertex(cross); add_edge_pos(triVerts[i], triVerts[j], cross); } int e0 = (cross_verts.a == int.MinValue) ? 1 : 0; int e1 = (cross_verts.c == int.MinValue) ? 1 : 2; if (e0 == 0 && e1 == 2) // preserve orientation order { e0 = 2; e1 = 0; } // preserving orientation does not mean we get a *consistent* orientation across faces. // To do that, we need to assign "sides". Either we have 1 less-than-0 or 1 greater-than-0 vtx. // Arbitrary decide that we want loops oriented like bdry loops would be if we discarded less-than side. // In that case, when we are "cutting off" one vertex, orientation would end up flipped if (less_than == 1) { int tmp = e0; e0 = e1; e1 = tmp; } int ev0 = cross_verts[e0]; int ev1 = cross_verts[e1]; // [RMS] if function is garbage, we can end up w/ case where both crossings // happen at same vertex, even though values are not the same (eg if // some values are double.MaxValue). We will just fail in these cases. if (ev0 != ev1) { Util.gDevAssert(ev0 != int.MinValue && ev1 != int.MinValue); int graph_eid = Graph.AppendEdge(ev0, ev1, (int)TriangleCase.EdgeEdge); if (graph_eid >= 0 && WantGraphEdgeInfo) { add_edge_edge(graph_eid, tid, new Index2i(triEdges[e0], triEdges[e1]), new Index2i(ev0, ev1)); } } } } Vertices = null; }
protected void compute_full(IEnumerable <int> Triangles) { Graph = new DGraph3(); if (WantGraphEdgeInfo) { GraphEdges = new DVector <GraphEdgeInfo>(); } Vertices = new Dictionary <Vector3d, int>(); foreach (int tid in Triangles) { Vector3dTuple3 tv = new Vector3dTuple3(); Mesh.GetTriVertices(tid, ref tv.V0, ref tv.V1, ref tv.V2); Vector3d f = new Vector3d(ValueF(tv.V0), ValueF(tv.V1), ValueF(tv.V2)); // round f to 0 within epsilon? if (f.x < 0 && f.y < 0 && f.z < 0) { continue; } if (f.x > 0 && f.y > 0 && f.z > 0) { continue; } Index3i triVerts = Mesh.GetTriangle(tid); Index3i triEdges = Mesh.GetTriEdges(tid); if (f.x * f.y * f.z == 0) { int z0 = (f.x == 0) ? 0 : ((f.y == 0) ? 1 : 2); int i1 = (z0 + 1) % 3, i2 = (z0 + 2) % 3; if (f[i1] * f[i2] > 0) { continue; // single-vertex-crossing case, skip here and let other edges catch it } if (f[i1] == 0 || f[i2] == 0) { // on-edge case int z1 = f[i1] == 0 ? i1 : i2; int e0 = add_or_append_vertex(Mesh.GetVertex(triVerts[z0])); int e1 = add_or_append_vertex(Mesh.GetVertex(triVerts[z1])); int graph_eid = Graph.AppendEdge(e0, e1, (int)TriangleCase.OnEdge); if (WantGraphEdgeInfo) { add_on_edge(graph_eid, tid, triEdges[z0]); } } else { // edge/vertex case Util.gDevAssert(f[i1] * f[i2] < 0); int vert_vid = add_or_append_vertex(Mesh.GetVertex(triVerts[z0])); int i = i1, j = i2; if (triVerts[j] < triVerts[i]) { int tmp = i; i = j; j = tmp; } Vector3d cross = find_crossing(tv[i], tv[j], f[i], f[j]); int cross_vid = add_or_append_vertex(cross); int graph_eid = Graph.AppendEdge(vert_vid, cross_vid, (int)TriangleCase.EdgeVertex); if (WantGraphEdgeInfo) { add_edge_edge(graph_eid, tid, new Index2i(triEdges[(z0 + 1) % 3], triVerts[z0])); } } } else { Index3i cross_verts = Index3i.Min; for (int ti = 0; ti < 3; ++ti) { int i = ti, j = (ti + 1) % 3; if (f[i] * f[j] > 0) { continue; } if (triVerts[j] < triVerts[i]) { int tmp = i; i = j; j = tmp; } Vector3d cross = find_crossing(tv[i], tv[j], f[i], f[j]); cross_verts[ti] = add_or_append_vertex(cross); } int e0 = (cross_verts.a == int.MinValue) ? 1 : 0; int e1 = (cross_verts.c == int.MinValue) ? 1 : 2; int ev0 = cross_verts[e0]; int ev1 = cross_verts[e1]; Util.gDevAssert(ev0 != int.MinValue && ev1 != int.MinValue); int graph_eid = Graph.AppendEdge(ev0, ev1, (int)TriangleCase.EdgeEdge); if (WantGraphEdgeInfo) { add_edge_edge(graph_eid, tid, new Index2i(triEdges[e0], triEdges[e1])); } } } Vertices = null; }
void generate_graph(DenseGrid3f supportGrid, DenseGridTrilinearImplicit distanceField) { int ni = supportGrid.ni, nj = supportGrid.nj, nk = supportGrid.nk; float dx = (float)CellSize; Vector3f origin = this.GridOrigin; // parameters for initializing cost grid float MODEL_SPACE = 0.01f; // needs small positive so that points on triangles count as inside (eg on ground plane) //float MODEL_SPACE = 2.0f*(float)CellSize; float CRAZY_DISTANCE = 99999.0f; bool UNIFORM_DISTANCE = true; float MAX_DIST = 10 * (float)CellSize; // parameters for sorting seeds Vector3i center_idx = new Vector3i(ni / 2, 0, nk / 2); // middle //Vector3i center_idx = new Vector3i(0, 0, 0); // corner bool reverse_per_layer = true; DenseGrid3f costGrid = new DenseGrid3f(supportGrid); foreach ( Vector3i ijk in costGrid.Indices() ) { Vector3d cell_center = new Vector3f(ijk.x * dx, ijk.y * dx, ijk.z * dx) + origin; float f = (float)distanceField.Value(ref cell_center); if (f <= MODEL_SPACE) f = CRAZY_DISTANCE; else if (UNIFORM_DISTANCE) f = 1.0f; else if (f > MAX_DIST) f = MAX_DIST; costGrid[ijk] = f; } // Find seeds on each layer, sort, and add to accumulated bottom-up seeds list. // This sorting has an *enormous* effect on the support generation. List<Vector3i> seeds = new List<Vector3i>(); List<Vector3i> layer_seeds = new List<Vector3i>(); for (int j = 0; j < nj; ++j) { layer_seeds.Clear(); for (int k = 0; k < nk; ++k) { for (int i = 0; i < ni; ++i) { if (supportGrid[i, j, k] == SUPPORT_TIP_BASE) layer_seeds.Add(new Vector3i(i, j, k)); } } layer_seeds.Sort((a, b) => { Vector3i pa = a; pa.y = 0; Vector3i pb = b; pb.y = 0; int sa = (pa-center_idx).LengthSquared, sb = (pb-center_idx).LengthSquared; return sa.CompareTo(sb); }); // reversing sort order is intresting? if(reverse_per_layer) layer_seeds.Reverse(); seeds.AddRange(layer_seeds); } HashSet<Vector3i> seed_indices = new HashSet<Vector3i>(seeds); // gives very different results... if (ProcessBottomUp == false) seeds.Reverse(); // for linear index a, is this a node we allow in graph? (ie graph bounds) Func<int, bool> node_filter_f = (a) => { Vector3i ai = costGrid.to_index(a); // why not y check?? return ai.x > 0 && ai.z > 0 && ai.x != ni - 1 && ai.y != nj - 1 && ai.z != nk - 1; }; // distance from linear index a to linear index b // this defines the cost field we want to find shortest path through Func<int, int, float> node_dist_f = (a, b) => { Vector3i ai = costGrid.to_index(a), bi = costGrid.to_index(b); if (bi.y >= ai.y) // b.y should always be a.y-1 return float.MaxValue; float sg = supportGrid[bi]; // don't connect to tips //if (sg == SUPPORT_TIP_BASE || sg == SUPPORT_TIP_TOP) // return float.MaxValue; if (sg == SUPPORT_TIP_TOP) return float.MaxValue; if (sg < 0) return -999999; // if b is already used, we will terminate there, so this is a good choice // otherwise cost is sqr-grid-distance + costGrid value (which is basically distance to surface) float c = costGrid[b]; float f = (float)(Math.Sqrt((bi - ai).LengthSquared) * CellSize); //float f = 0; return c + f; }; // which linear-index nbrs to consider for linear index a Func<int, IEnumerable<int>> neighbour_f = (a) => { Vector3i ai = costGrid.to_index(a); return down_neighbours(ai, costGrid); }; // when do we terminate Func<int, bool> terminate_f = (a) => { Vector3i ai = costGrid.to_index(a); // terminate if we hit existing support path if (seed_indices.Contains(ai) == false && supportGrid[ai] < 0) return true; // terminate if we hit ground plane if (ai.y == 0) return true; return false; }; DijkstraGraphDistance dijkstra = new DijkstraGraphDistance(ni * nj * nk, false, node_filter_f, node_dist_f, neighbour_f); dijkstra.TrackOrder = true; List<int> path = new List<int>(); Graph = new DGraph3(); Dictionary<Vector3i, int> CellToGraph = new Dictionary<Vector3i, int>(); TipVertices = new HashSet<int>(); TipBaseVertices = new HashSet<int>(); GroundVertices = new HashSet<int>(); // seeds are tip-base points for (int k = 0; k < seeds.Count; ++k) { // add seed point (which is a tip-base vertex) as seed for dijkstra prop int seed = costGrid.to_linear(seeds[k]); dijkstra.Reset(); dijkstra.AddSeed(seed, 0); // compute to termination (ground, existing node, etc) int base_node = dijkstra.ComputeToNode(terminate_f); if (base_node < 0) base_node = dijkstra.GetOrder().Last(); // extract the path path.Clear(); dijkstra.GetPathToSeed(base_node, path); int N = path.Count; // first point on path is termination point. // create vertex for it if we have not yet Vector3i basept_idx = supportGrid.to_index(path[0]); int basept_vid; if ( CellToGraph.TryGetValue(basept_idx, out basept_vid) == false ) { Vector3d curv = get_cell_center(basept_idx); if (basept_idx.y == 0) { curv.y = 0; } basept_vid = Graph.AppendVertex(curv); if (basept_idx.y == 0) { GroundVertices.Add(basept_vid); } CellToGraph[basept_idx] = basept_vid; } int cur_vid = basept_vid; // now walk up path and create vertices as necessary for (int i = 0; i < N; ++i) { int idx = path[i]; if ( supportGrid[idx] >= 0 ) supportGrid[idx] = SUPPORT_GRID_USED; if ( i > 0 ) { Vector3i next_idx = supportGrid.to_index(path[i]); int next_vid; if (CellToGraph.TryGetValue(next_idx, out next_vid) == false) { Vector3d nextv = get_cell_center(next_idx); next_vid = Graph.AppendVertex(nextv); CellToGraph[next_idx] = next_vid; } Graph.AppendEdge(cur_vid, next_vid); cur_vid = next_vid; } } // seed was tip-base so we should always get back there. Then we // explicitly add tip-top and edge to it. if ( supportGrid[path[N-1]] == SUPPORT_TIP_BASE ) { Vector3i vec_idx = supportGrid.to_index(path[N-1]); TipBaseVertices.Add(CellToGraph[vec_idx]); Vector3i tip_idx = vec_idx + Vector3i.AxisY; int tip_vid; if (CellToGraph.TryGetValue(tip_idx, out tip_vid) == false) { Vector3d tipv = get_cell_center(tip_idx); tip_vid = Graph.AppendVertex(tipv); CellToGraph[tip_idx] = tip_vid; Graph.AppendEdge(cur_vid, tip_vid); TipVertices.Add(tip_vid); } } } /* * Snap tips to surface */ gParallel.ForEach(TipVertices, (tip_vid) => { bool snapped = false; Vector3d v = Graph.GetVertex(tip_vid); Frame3f hitF; // try shooting ray straight up. if that hits, and point is close, we use it if (MeshQueries.RayHitPointFrame(Mesh, MeshSpatial, new Ray3d(v, Vector3d.AxisY), out hitF)) { if (v.Distance(hitF.Origin) < 2 * CellSize) { v = hitF.Origin; snapped = true; } } // if that failed, try straight down if (!snapped) { if (MeshQueries.RayHitPointFrame(Mesh, MeshSpatial, new Ray3d(v, -Vector3d.AxisY), out hitF)) { if (v.Distance(hitF.Origin) < CellSize) { v = hitF.Origin; snapped = true; } } } // if it missed, or hit pt was too far, find nearest point and try that if (!snapped) { hitF = MeshQueries.NearestPointFrame(Mesh, MeshSpatial, v); if (v.Distance(hitF.Origin) < 2 * CellSize) { v = hitF.Origin; snapped = true; } // can this ever fail? tips should always be within 2 cells... } if (snapped) Graph.SetVertex(tip_vid, v); }); }