Exemple #1
0
 public NetData(NetData data)
 {
     this.time      = data.time;
     this.epoch     = data.epoch;
     this.avgErr    = data.avgErr;
     this.errChange = data.errChange;
     this.seconds   = data.seconds;
 }
Exemple #2
0
        public NetData LearnInt(MainForm parentForm)
        {
            int currInput, currIndex;

            this.parent  = parentForm;
            this.era     = 0;
            this.avgErr  = int.MaxValue;
            this.currErr = 0;
            double currAbsErr = 0;

            this.eta = maxEta;

            this.AllocMem();
            this.InitWeights();
            this.PreGenerateInputOutput();          //speed up, memory down

            DateTime start = DateTime.Now;
            NetData  data  = NetData.Empty;

            do
            {
                if (!this.parent.GetState())
                {
                    break;
                }
                currErr = 0;

                for (int i = 0; i < NumOfInputs; i++)
                {
                    inputIndecies.Add(i);
                }

                while (inputIndecies.Count > 0)
                {
                    currIndex = r.Next(inputIndecies.Count - 1);
                    currInput = inputIndecies[currIndex];
                    inputIndecies.RemoveAt(currIndex);

                    GenerateIntInput(currInput);
                    GenerateIntOutput(currInput);

                    ForwardPass();
                    currErr += CountCurrentError();
                    //if (this.error.Max() < this.config.minError)
                    //continue;

                    BackwardPass();
                    Application.DoEvents();
                }
                this.lastAvgError = this.avgErr;
                this.avgErr       = CountAverageError();
                this.era++;
                currAbsErr = Math.Abs(this.avgErr);
                this.eta  /= 1.01;
            } while (currAbsErr > config.minError &&
                     Math.Abs(lastAvgError - avgErr) > config.minErrorChange &&
                     this.era < config.maxEpoch);

            data.time      = DateTime.Now.Subtract(start);
            data.avgErr    = this.avgErr;
            data.epoch     = this.Epoch;
            data.errChange = this.lastAvgError - this.avgErr;

            return(data);
        }
Exemple #3
0
        private void DoFullLearning()
        {
            Random  rand = new Random();
            var     dataForCurrentCount = new List <NetData>();
            NetData avgData             = NetData.Empty;

            int candidate = 0;

            if (this.MinFixedCount == 0)            //for 0 fixed neurons
            {
                for (int n = 0; n < AttemptsOnCurrentIndex && running; n++)
                {
                    this.SetState(n + 1, this.AttemptsOnCurrentCount);
                    dataForCurrentCount.Add(this.net.LearnInt(this));
                }
                foreach (var t in dataForCurrentCount)
                {
                    avgData.time      += t.time;
                    avgData.epoch     += t.epoch;
                    avgData.errChange += t.errChange;
                    avgData.avgErr    += t.avgErr;
                }
                if (!running)
                {
                    return;
                }
                avgData.avgErr    /= dataForCurrentCount.Count;
                avgData.epoch     /= dataForCurrentCount.Count;
                avgData.errChange /= dataForCurrentCount.Count;
                avgData.seconds    = avgData.time.TotalSeconds / dataForCurrentCount.Count;

                dataForCurrentCount.Clear();

                var e = new Experiment {
                    fixedNeurons = new List <int>(0), name = "Unfixed", data = avgData
                };
                this.graph.AddExperiment(e);
                if (logger.isRunning)
                {
                    logger.Log(e.ToExtendedString());
                }

                avgData = NetData.Empty;
            }

            for (int i = MinFixedCount == 0 ? 1 : MinFixedCount; i <= MaxFixedCount; i++)         //fixed neurons
            {
                avgData = NetData.Empty;
                var exp = new Experiment();
                exp.name         = String.Format("Fixed count: {0}", i);
                exp.fixedNeurons = new List <int>();

                for (int j = 0; j < AttemptsOnCurrentCount && running; j++)            //on current fixed count
                {
                    //this.net.LearnInt(this);        //without fixing
                    exp.fixedNeurons.Clear();

                    for (int l = 0; l < i && running; l++)      //get random fixed index
                    {
                        do
                        {
                            candidate = rand.Next(0, this.config.NumHidden);
                        }while (exp.fixedNeurons.Count(x => x == candidate) > 0);               //check if candidate has not been fixed

                        exp.fixedNeurons.Add(candidate);
                    }

                    for (int k = 0; k < AttemptsOnCurrentIndex && running; k++)        //on current fixed index
                    {
                        if (!this.running)
                        {
                            this.DoStop();
                            return;
                        }

                        this.SetState(i, exp.fixedNeurons, j + 1, k + 1);
                        this.net.LearnInt(this);
                        this.net.Fix(exp.fixedNeurons);
                        dataForCurrentCount.Add(this.net.LearnInt(this));
                        this.net.Unfix();
                    }
                }
                if (!running)
                {
                    return;
                }
                foreach (var t in dataForCurrentCount)
                {
                    avgData.time      += t.time;
                    avgData.epoch     += t.epoch;
                    avgData.errChange += t.errChange;
                    avgData.avgErr    += t.avgErr;
                }

                avgData.avgErr    /= dataForCurrentCount.Count;
                avgData.epoch     /= dataForCurrentCount.Count;
                avgData.errChange /= dataForCurrentCount.Count;
                avgData.seconds    = avgData.time.TotalSeconds / dataForCurrentCount.Count;

                dataForCurrentCount.Clear();
                exp.data = avgData;
                graph.AddExperiment(exp);

                if (logger.isRunning)
                {
                    logger.Log(exp.ToExtendedString());
                }
            }
        }
Exemple #4
0
        private void DoBatchLearning()
        {
            for (int i = 0; i < this.exps.Count && running; i++)
            {
                if (this.clbExperiments.GetItemChecked(i))      //user can check it manually for skipping
                {
                    continue;
                }

                var     allData = new List <NetData>();
                NetData avgData = NetData.Empty;

                this.clbExperiments.SelectedIndex = i;

                for (int j = 0; j < this.exps[i].repeats && running; j++)
                {
                    if (this.exps[i].fixedNeurons.Count > 0)
                    {
                        this.SetState(j + 1, this.exps[i].repeats, i + 1, this.exps.Count, this.exps[i].fixedNeurons);
                    }
                    else
                    {
                        this.SetState(j + 1, this.exps[i].repeats);
                    }

                    if (this.exps[i].fixedNeurons.Count > 0)        //just if we have fixed
                    {
                        this.net.LearnInt(this);
                        this.net.Fix(this.exps[i].fixedNeurons);
                    }

                    allData.Add(this.net.LearnInt(this));
                    this.net.Unfix();
                }
                if (!running)
                {
                    return;
                }

                foreach (var t in allData)
                {
                    avgData.time      += t.time;
                    avgData.epoch     += t.epoch;
                    avgData.errChange += t.errChange;
                    avgData.avgErr    += t.avgErr;
                }
                avgData.avgErr    /= allData.Count;
                avgData.epoch     /= allData.Count;
                avgData.errChange /= allData.Count;
                avgData.seconds    = avgData.time.TotalSeconds / allData.Count;

                this.exps[i].data = avgData;
                this.clbExperiments.SetItemChecked(i, true);
                graph.AddExperiment(this.exps[i]);

                if (logger.isRunning)
                {
                    logger.Log(exps[i].ToExtendedString());
                }
            }
        }