private int[] findErrorMagnitudes(GF256Poly errorEvaluator, int[] errorLocations, bool dataMatrix)
        {
            // This is directly applying Forney's Formula
            int s = errorLocations.Length;

            int[] result = new int[s];
            for (int i = 0; i < s; i++)
            {
                int xiInverse   = field.inverse(errorLocations[i]);
                int denominator = 1;
                for (int j = 0; j < s; j++)
                {
                    if (i != j)
                    {
                        denominator = field.multiply(denominator, GF256.addOrSubtract(1, field.multiply(errorLocations[j], xiInverse)));
                    }
                }
                result[i] = field.multiply(errorEvaluator.evaluateAt(xiInverse), field.inverse(denominator));
                // Thanks to sanfordsquires for this fix:
                if (dataMatrix)
                {
                    result[i] = field.multiply(result[i], xiInverse);
                }
            }
            return(result);
        }
        private int[] findErrorLocations(GF256Poly errorLocator)
        {
            // This is a direct application of Chien's search
            int numErrors = errorLocator.Degree;

            if (numErrors == 1)
            {
                // shortcut
                return(new int[] { errorLocator.getCoefficient(1) });
            }
            int[] result = new int[numErrors];
            int   e      = 0;

            for (int i = 1; i < 256 && e < numErrors; i++)
            {
                if (errorLocator.evaluateAt(i) == 0)
                {
                    result[e] = field.inverse(i);
                    e++;
                }
            }
            if (e != numErrors)
            {
                throw new ReedSolomonException("Error locator degree does not match number of roots");
            }
            return(result);
        }
Exemple #3
0
 /**
  * <p>Decodes given set of received codewords, which include both data and error-correction
  * codewords. Really, this means it uses Reed-Solomon to detect and correct errors, in-place,
  * in the input.</p>
  *
  * @param received data and error-correction codewords
  * @param twoS number of error-correction codewords available
  * @throws ReedSolomonException if decoding fails for any reason
  */
 public void decode(int[] received, int twoS)
 {
     try{
         GF256Poly poly = new GF256Poly(field, received);
         int[]     syndromeCoefficients = new int[twoS];
         bool      dataMatrix           = field.Equals(GF256.DATA_MATRIX_FIELD);
         bool      noError = true;
         for (int i = 0; i < twoS; i++)
         {
             // Thanks to sanfordsquires for this fix:
             int eval = poly.evaluateAt(field.exp(dataMatrix ? i + 1 : i));
             syndromeCoefficients[syndromeCoefficients.Length - 1 - i] = eval;
             if (eval != 0)
             {
                 noError = false;
             }
         }
         if (noError)
         {
             return;
         }
         GF256Poly   syndrome   = new GF256Poly(field, syndromeCoefficients);
         GF256Poly[] sigmaOmega =
             runEuclideanAlgorithm(field.buildMonomial(twoS, 1), syndrome, twoS);
         GF256Poly sigma           = sigmaOmega[0];
         GF256Poly omega           = sigmaOmega[1];
         int[]     errorLocations  = findErrorLocations(sigma);
         int[]     errorMagnitudes = findErrorMagnitudes(omega, errorLocations, dataMatrix);
         for (int i = 0; i < errorLocations.Length; i++)
         {
             int position = received.Length - 1 - field.log(errorLocations[i]);
             if (position < 0)
             {
                 throw new ReedSolomonException("Bad error location");
             }
             received[position] = GF256.addOrSubtract(received[position], errorMagnitudes[i]);
         }
     }catch (ReedSolomonException e) {
         throw new ReedSolomonException(e.Message);
     }
 }
 /**
  * <p>Decodes given set of received codewords, which include both data and error-correction
  * codewords. Really, this means it uses Reed-Solomon to detect and correct errors, in-place,
  * in the input.</p>
  *
  * @param received data and error-correction codewords
  * @param twoS number of error-correction codewords available
  * @throws ReedSolomonException if decoding fails for any reason
  */
 public void decode(int[] received, int twoS) {
     try{
     
     
       GF256Poly poly = new GF256Poly(field, received);
       int[] syndromeCoefficients = new int[twoS];
       bool dataMatrix = field.Equals(GF256.DATA_MATRIX_FIELD);
       bool noError = true;
       for (int i = 0; i < twoS; i++) {
         // Thanks to sanfordsquires for this fix:
         int eval = poly.evaluateAt(field.exp(dataMatrix ? i + 1 : i));
         syndromeCoefficients[syndromeCoefficients.Length - 1 - i] = eval;
         if (eval != 0) {
           noError = false;
         }
       }
       if (noError) {
         return;
       }
       GF256Poly syndrome = new GF256Poly(field, syndromeCoefficients);
       GF256Poly[] sigmaOmega =
           runEuclideanAlgorithm(field.buildMonomial(twoS, 1), syndrome, twoS);
       GF256Poly sigma = sigmaOmega[0];
       GF256Poly omega = sigmaOmega[1];
       int[] errorLocations = findErrorLocations(sigma);
       int[] errorMagnitudes = findErrorMagnitudes(omega, errorLocations, dataMatrix);
       for (int i = 0; i < errorLocations.Length; i++) {
         int position = received.Length - 1 - field.log(errorLocations[i]);
         if (position < 0) {
           throw new ReedSolomonException("Bad error location");
         }
         received[position] = GF256.addOrSubtract(received[position], errorMagnitudes[i]);
       }
     }catch(ReedSolomonException e){
       throw new ReedSolomonException(e.Message);
     }
 }
		private int[] findErrorMagnitudes(GF256Poly errorEvaluator, int[] errorLocations, bool dataMatrix)
		{
			// This is directly applying Forney's Formula
			int s = errorLocations.Length;
			int[] result = new int[s];
			for (int i = 0; i < s; i++)
			{
				int xiInverse = field.inverse(errorLocations[i]);
				int denominator = 1;
				for (int j = 0; j < s; j++)
				{
					if (i != j)
					{
						denominator = field.multiply(denominator, GF256.addOrSubtract(1, field.multiply(errorLocations[j], xiInverse)));
					}
				}
				result[i] = field.multiply(errorEvaluator.evaluateAt(xiInverse), field.inverse(denominator));
				// Thanks to sanfordsquires for this fix:
				if (dataMatrix)
				{
					result[i] = field.multiply(result[i], xiInverse);
				}
			}
			return result;
		}
		private int[] findErrorLocations(GF256Poly errorLocator)
		{
			// This is a direct application of Chien's search
			int numErrors = errorLocator.Degree;
			if (numErrors == 1)
			{
				// shortcut
				return new int[]{errorLocator.getCoefficient(1)};
			}
			int[] result = new int[numErrors];
			int e = 0;
			for (int i = 1; i < 256 && e < numErrors; i++)
			{
				if (errorLocator.evaluateAt(i) == 0)
				{
					result[e] = field.inverse(i);
					e++;
				}
			}
			if (e != numErrors)
			{
				throw new ReedSolomonException("Error locator degree does not match number of roots");
			}
			return result;
		}