Exemple #1
0
        // ///////////////////////////////////////////////////////////////////
        // Calculate the ECI coordinates of the location "geo" at time "date".
        // Assumes geo coordinates are km-based.
        // Assumes the earth is an oblate spheroid as defined in WGS '72.
        // Reference: The 1992 Astronomical Almanac, page K11
        // Reference: www.celestrak.com (Dr. TS Kelso)
        public Eci(CoordGeo geo, Julian date)
        {
            m_VectorUnits = VectorUnits.Km;

            double mfactor = Globals.TWOPI * (Globals.OMEGA_E / Globals.SEC_PER_DAY);
            double lat     = geo.Latitude;
            double lon     = geo.Longitude;
            double alt     = geo.Altitude;

            // Calculate Local Mean Sidereal Time (theta)
            double theta = date.toLMST(lon);
            double c     = 1.0 / Math.Sqrt(1.0 + Globals.F * (Globals.F - 2.0) * Globals.Sqr(Math.Sin(lat)));
            double s     = Globals.Sqr(1.0 - Globals.F) * c;
            double achcp = (Globals.XKMPER * c + alt) * Math.Cos(lat);

            m_Date = date;

            m_Position = new Vector();

            m_Position.X = achcp * Math.Cos(theta);                    // km
            m_Position.Y = achcp * Math.Sin(theta);                    // km
            m_Position.Z = (Globals.XKMPER * s + alt) * Math.Sin(lat); // km
            m_Position.W = Math.Sqrt(Globals.Sqr(m_Position.X) +
                                     Globals.Sqr(m_Position.Y) +
                                     Globals.Sqr(m_Position.Z)); // range, km

            m_Velocity = new Vector();

            m_Velocity.X = -mfactor * m_Position.Y;            // km / sec
            m_Velocity.Y = mfactor * m_Position.X;
            m_Velocity.Z = 0.0;
            m_Velocity.W = Math.Sqrt(Globals.Sqr(m_Velocity.X) + // range rate km/sec^2
                                     Globals.Sqr(m_Velocity.Y));
        }
Exemple #2
0
        // ///////////////////////////////////////////////////////////////////////////
        // getLookAngle()
        // Return the topocentric (azimuth, elevation, etc.) coordinates for a target
        // object described by the input ECI coordinates.
        public CoordTopo getLookAngle(Eci eci)
        {
            // Calculate the ECI coordinates for this Site object at the time
            // of interest.
            Julian date    = eci.Date;
            Eci    eciSite = new Eci(m_geo, date);

            // The Site ECI units are km-based; ensure target ECI units are same
            if (!eci.UnitsAreKm())
            {
                throw new Exception("ECI units must be kilometer-based");
            }

            Vector vecRgRate = new Vector(eci.Velocity.X - eciSite.Velocity.X,
                                          eci.Velocity.Y - eciSite.Velocity.Y,
                                          eci.Velocity.Z - eciSite.Velocity.Z);

            double x = eci.Position.X - eciSite.Position.X;
            double y = eci.Position.Y - eciSite.Position.Y;
            double z = eci.Position.Z - eciSite.Position.Z;
            double w = Math.Sqrt(Globals.Sqr(x) + Globals.Sqr(y) + Globals.Sqr(z));

            Vector vecRange = new Vector(x, y, z, w);

            // The site's Local Mean Sidereal Time at the time of interest.
            double theta = date.toLMST(Longitude);

            double sin_lat   = Math.Sin(Latitude);
            double cos_lat   = Math.Cos(Latitude);
            double sin_theta = Math.Sin(theta);
            double cos_theta = Math.Cos(theta);

            double top_s = sin_lat * cos_theta * vecRange.X +
                           sin_lat * sin_theta * vecRange.Y -
                           cos_lat * vecRange.Z;
            double top_e = -sin_theta * vecRange.X +
                           cos_theta * vecRange.Y;
            double top_z = cos_lat * cos_theta * vecRange.X +
                           cos_lat * sin_theta * vecRange.Y +
                           sin_lat * vecRange.Z;
            double az = Math.Atan(-top_e / top_s);

            if (top_s > 0.0)
            {
                az += Globals.PI;
            }

            if (az < 0.0)
            {
                az += 2.0 * Globals.PI;
            }

            double el   = Math.Asin(top_z / vecRange.W);
            double rate = (vecRange.X * vecRgRate.X +
                           vecRange.Y * vecRgRate.Y +
                           vecRange.Z * vecRgRate.Z) / vecRange.W;

            CoordTopo topo = new CoordTopo(az,         // azimuth, radians
                                           el,         // elevation, radians
                                           vecRange.W, // range, km
                                           rate);      // rate, km / sec

#if WANT_ATMOSPHERIC_CORRECTION
            // Elevation correction for atmospheric refraction.
            // Reference:  Astronomical Algorithms by Jean Meeus, pp. 101-104
            // Note:  Correction is meaningless when apparent elevation is below horizon
            topo.m_El += Globals.Deg2Rad((1.02 /
                                          Math.Tan(Globals.Deg2Rad(Globals.Rad2Deg(el) + 10.3 /
                                                                   (Globals.Rad2Deg(el) + 5.11)))) / 60.0);
            if (topo.m_El < 0.0)
            {
                topo.m_El = el; // Reset to true elevation
            }
            if (topo.m_El > (Globals.PI / 2))
            {
                topo.m_El = (Globals.PI / 2);
            }
#endif
            return(topo);
        }