static bool Eval(WrenVM vm, Obj[] args, int stackStart) { if (args[stackStart + 1] is ObjString) { // Eval the code in the module where the calling function was defined. Obj callingFn = vm.Fiber.GetFrame().Fn; ObjModule module = (callingFn is ObjFn) ? ((ObjFn)callingFn).Module : ((ObjClosure)callingFn).Function.Module; // Compile it. ObjFn fn = Compiler.Compile(vm, module, "", args[stackStart + 1].ToString(), false); if (fn == null) { vm.Fiber.Error = Obj.MakeString("Could not compile source code."); return false; } // TODO: Include the compile errors in the runtime error message. // Create a fiber to run the code in. ObjFiber evalFiber = new ObjFiber(fn) { Caller = vm.Fiber }; // Switch to the fiber. args[stackStart] = evalFiber; return false; } vm.Fiber.Error = Obj.MakeString("Source code must be a string."); return false; }
// Resets [fiber] back to an initial state where it is ready to invoke [fn]. private void ResetFiber(Obj fn) { Stack = new Obj[InitialStackSize]; Capacity = InitialStackSize; Frames = new List<CallFrame>(); // Push the stack frame for the function. StackTop = 0; NumFrames = 1; OpenUpvalues = null; Caller = null; Error = null; CallerIsTrying = false; CallFrame frame = new CallFrame { Fn = fn, StackStart = 0, Ip = 0 }; Frames.Add(frame); }
// Resets [fiber] back to an initial state where it is ready to invoke [fn]. private void ResetFiber(Obj fn) { Stack = new Obj[InitialStackSize]; Capacity = InitialStackSize; Frames = new List <CallFrame>(); // Push the stack frame for the function. StackTop = 0; NumFrames = 1; OpenUpvalues = null; Caller = null; Error = null; CallerIsTrying = false; CallFrame frame = new CallFrame { Fn = fn, StackStart = 0, Ip = 0 }; Frames.Add(frame); }
public InterpretResult Interpret(string moduleName, string sourcePath, string source) { if (sourcePath.Length == 0) return LoadIntoCore(source); // TODO: Better module name. Obj name = Obj.MakeString(moduleName); ObjFiber f = LoadModule(name, source); if (f == null) { return InterpretResult.CompileError; } Fiber = f; bool succeeded = RunInterpreter(); return succeeded ? InterpretResult.Success : InterpretResult.RuntimeError; }
// The main bytecode interpreter loop. This is where the magic happens. It is // also, as you can imagine, highly performance critical. Returns `true` if the // fiber completed without error. private bool RunInterpreter() { /* Load Frame */ CallFrame frame = Fiber.Frames[Fiber.NumFrames - 1]; int ip = frame.Ip; int stackStart = frame.StackStart; Obj[] stack = Fiber.Stack; ObjFn fn = frame.Fn as ObjFn ?? ((ObjClosure)frame.Fn).Function; byte[] bytecode = fn.Bytecode; while (true) { Instruction instruction = (Instruction)bytecode[ip++]; int index; switch (instruction) { case Instruction.LOAD_LOCAL_0: case Instruction.LOAD_LOCAL_1: case Instruction.LOAD_LOCAL_2: case Instruction.LOAD_LOCAL_3: case Instruction.LOAD_LOCAL_4: case Instruction.LOAD_LOCAL_5: case Instruction.LOAD_LOCAL_6: case Instruction.LOAD_LOCAL_7: case Instruction.LOAD_LOCAL_8: { index = stackStart + instruction - Instruction.LOAD_LOCAL_0; if (Fiber.StackTop >= Fiber.Capacity) stack = Fiber.IncreaseStack(); stack[Fiber.StackTop++] = stack[index]; break; } case Instruction.LOAD_LOCAL: { index = stackStart + bytecode[ip++]; if (Fiber.StackTop >= Fiber.Capacity) stack = Fiber.IncreaseStack(); stack[Fiber.StackTop++] = stack[index]; break; } case Instruction.LOAD_FIELD_THIS: { byte field = bytecode[ip++]; ObjInstance instance = (ObjInstance)stack[stackStart]; if (Fiber.StackTop >= Fiber.Capacity) stack = Fiber.IncreaseStack(); stack[Fiber.StackTop++] = instance.Fields[field]; break; } case Instruction.POP: { Fiber.StackTop--; break; } case Instruction.DUP: { if (Fiber.StackTop >= Fiber.Capacity) stack = Fiber.IncreaseStack(); stack[Fiber.StackTop] = stack[Fiber.StackTop - 1]; Fiber.StackTop++; break; } case Instruction.NULL: { if (Fiber.StackTop >= Fiber.Capacity) stack = Fiber.IncreaseStack(); stack[Fiber.StackTop++] = Obj.Null; break; } case Instruction.FALSE: { if (Fiber.StackTop >= Fiber.Capacity) stack = Fiber.IncreaseStack(); stack[Fiber.StackTop++] = Obj.False; break; } case Instruction.TRUE: { if (Fiber.StackTop >= Fiber.Capacity) stack = Fiber.IncreaseStack(); stack[Fiber.StackTop++] = Obj.True; break; } case Instruction.CALL_0: case Instruction.CALL_1: case Instruction.CALL_2: case Instruction.CALL_3: case Instruction.CALL_4: case Instruction.CALL_5: case Instruction.CALL_6: case Instruction.CALL_7: case Instruction.CALL_8: case Instruction.CALL_9: case Instruction.CALL_10: case Instruction.CALL_11: case Instruction.CALL_12: case Instruction.CALL_13: case Instruction.CALL_14: case Instruction.CALL_15: case Instruction.CALL_16: // Handle Super calls case Instruction.SUPER_0: case Instruction.SUPER_1: case Instruction.SUPER_2: case Instruction.SUPER_3: case Instruction.SUPER_4: case Instruction.SUPER_5: case Instruction.SUPER_6: case Instruction.SUPER_7: case Instruction.SUPER_8: case Instruction.SUPER_9: case Instruction.SUPER_10: case Instruction.SUPER_11: case Instruction.SUPER_12: case Instruction.SUPER_13: case Instruction.SUPER_14: case Instruction.SUPER_15: case Instruction.SUPER_16: { int numArgs = instruction - (instruction >= Instruction.SUPER_0 ? Instruction.SUPER_0 : Instruction.CALL_0) + 1; int symbol = (bytecode[ip] << 8) + bytecode[ip + 1]; ip += 2; // The receiver is the first argument. int argStart = Fiber.StackTop - numArgs; Obj receiver = stack[argStart]; ObjClass classObj; if (instruction < Instruction.SUPER_0) { if (receiver.Type == ObjType.Obj) classObj = receiver.ClassObj; else if (receiver.Type == ObjType.Num) classObj = NumClass; else if (receiver == Obj.True || receiver == Obj.False) classObj = BoolClass; else classObj = NullClass; } else { // The superclass is stored in a constant. classObj = fn.Constants[(bytecode[ip] << 8) + bytecode[ip + 1]] as ObjClass; ip += 2; } // If the class's method table doesn't include the symbol, bail. Method method = symbol < classObj.Methods.Length ? classObj.Methods[symbol] : null; if (method == null) { /* Method not found */ frame.Ip = ip; MethodNotFound(this, classObj, symbol); if (!HandleRuntimeError()) return false; frame = Fiber.Frames[Fiber.NumFrames - 1]; ip = frame.Ip; stackStart = frame.StackStart; stack = Fiber.Stack; fn = (frame.Fn as ObjFn) ?? (frame.Fn as ObjClosure).Function; bytecode = fn.Bytecode; break; } if (method.MType == MethodType.Primitive) { // After calling this, the result will be in the first arg slot. if (method.Primitive(this, stack, argStart)) { Fiber.StackTop = argStart + 1; } else { frame.Ip = ip; if (Fiber.Error != null && Fiber.Error != Obj.Null) { if (!HandleRuntimeError()) return false; } else { // If we don't have a fiber to switch to, stop interpreting. if (stack[argStart] == Obj.Null) return true; Fiber = stack[argStart] as ObjFiber; if (Fiber == null) return false; } /* Load Frame */ frame = Fiber.Frames[Fiber.NumFrames - 1]; ip = frame.Ip; stackStart = frame.StackStart; stack = Fiber.Stack; fn = (frame.Fn as ObjFn) ?? (frame.Fn as ObjClosure).Function; bytecode = fn.Bytecode; } break; } frame.Ip = ip; if (method.MType == MethodType.Block) { receiver = method.Obj; } else if (!CheckArity(stack, numArgs, argStart)) { if (!HandleRuntimeError()) return false; frame = Fiber.Frames[Fiber.NumFrames - 1]; ip = frame.Ip; stackStart = frame.StackStart; stack = Fiber.Stack; fn = (frame.Fn as ObjFn) ?? (frame.Fn as ObjClosure).Function; bytecode = fn.Bytecode; break; } Fiber.Frames.Add(frame = new CallFrame { Fn = receiver, StackStart = argStart, Ip = 0 }); Fiber.NumFrames++; /* Load Frame */ ip = 0; stackStart = argStart; fn = (receiver as ObjFn) ?? (receiver as ObjClosure).Function; bytecode = fn.Bytecode; break; } case Instruction.STORE_LOCAL: { index = stackStart + bytecode[ip++]; stack[index] = stack[Fiber.StackTop - 1]; break; } case Instruction.CONSTANT: { if (Fiber.StackTop >= Fiber.Capacity) stack = Fiber.IncreaseStack(); stack[Fiber.StackTop++] = fn.Constants[(bytecode[ip] << 8) + bytecode[ip + 1]]; ip += 2; break; } case Instruction.LOAD_UPVALUE: { if (Fiber.StackTop >= Fiber.Capacity) stack = Fiber.IncreaseStack(); stack[Fiber.StackTop++] = ((ObjClosure)frame.Fn).Upvalues[bytecode[ip++]].Container; break; } case Instruction.STORE_UPVALUE: { ObjUpvalue[] upvalues = ((ObjClosure)frame.Fn).Upvalues; upvalues[bytecode[ip++]].Container = stack[Fiber.StackTop - 1]; break; } case Instruction.LOAD_MODULE_VAR: { if (Fiber.StackTop >= Fiber.Capacity) stack = Fiber.IncreaseStack(); stack[Fiber.StackTop++] = fn.Module.Variables[(bytecode[ip] << 8) + bytecode[ip + 1]].Container; ip += 2; break; } case Instruction.STORE_MODULE_VAR: { fn.Module.Variables[(bytecode[ip] << 8) + bytecode[ip + 1]].Container = stack[Fiber.StackTop - 1]; ip += 2; break; } case Instruction.STORE_FIELD_THIS: { byte field = bytecode[ip++]; ObjInstance instance = (ObjInstance)stack[stackStart]; instance.Fields[field] = stack[Fiber.StackTop - 1]; break; } case Instruction.LOAD_FIELD: { byte field = bytecode[ip++]; ObjInstance instance = (ObjInstance)stack[--Fiber.StackTop]; if (Fiber.StackTop >= Fiber.Capacity) stack = Fiber.IncreaseStack(); stack[Fiber.StackTop++] = instance.Fields[field]; break; } case Instruction.STORE_FIELD: { byte field = bytecode[ip++]; ObjInstance instance = (ObjInstance)stack[--Fiber.StackTop]; instance.Fields[field] = stack[Fiber.StackTop - 1]; break; } case Instruction.JUMP: { int offset = (bytecode[ip] << 8) + bytecode[ip + 1]; ip += offset + 2; break; } case Instruction.LOOP: { // Jump back to the top of the loop. int offset = (bytecode[ip] << 8) + bytecode[ip + 1]; ip += 2; ip -= offset; break; } case Instruction.JUMP_IF: { int offset = (bytecode[ip] << 8) + bytecode[ip + 1]; ip += 2; Obj condition = stack[--Fiber.StackTop]; if (condition == Obj.False || condition == Obj.Null) ip += offset; break; } case Instruction.AND: case Instruction.OR: { int offset = (bytecode[ip] << 8) + bytecode[ip + 1]; ip += 2; Obj condition = stack[Fiber.StackTop - 1]; if ((condition == Obj.Null || condition == Obj.False) ^ instruction == Instruction.OR) ip += offset; else Fiber.StackTop--; break; } case Instruction.CLOSE_UPVALUE: { Fiber.CloseUpvalue(); Fiber.StackTop--; break; } case Instruction.RETURN: { Fiber.Frames.RemoveAt(--Fiber.NumFrames); Obj result = stack[--Fiber.StackTop]; // Close any upvalues still in scope. if (Fiber.StackTop > stackStart) { while (Fiber.OpenUpvalues != null && Fiber.OpenUpvalues.Index >= stackStart) { Fiber.CloseUpvalue(); } } // If the fiber is complete, end it. if (Fiber.NumFrames == 0) { // If this is the main fiber, we're done. if (Fiber.Caller == null) return true; // We have a calling fiber to resume. Fiber = Fiber.Caller; stack = Fiber.Stack; // Store the result in the resuming fiber. stack[Fiber.StackTop - 1] = result; } else { // Discard the stack slots for the call frame (leaving one slot for the result). Fiber.StackTop = stackStart + 1; // Store the result of the block in the first slot, which is where the // caller expects it. stack[stackStart] = result; } /* Load Frame */ frame = Fiber.Frames[Fiber.NumFrames - 1]; ip = frame.Ip; stackStart = frame.StackStart; fn = frame.Fn as ObjFn ?? (frame.Fn as ObjClosure).Function; bytecode = fn.Bytecode; break; } case Instruction.CLOSURE: { ObjFn prototype = fn.Constants[(bytecode[ip] << 8) + bytecode[ip + 1]] as ObjFn; ip += 2; // Create the closure and push it on the stack before creating upvalues // so that it doesn't get collected. ObjClosure closure = new ObjClosure(prototype); if (Fiber.StackTop >= Fiber.Capacity) stack = Fiber.IncreaseStack(); stack[Fiber.StackTop++] = closure; // Capture upvalues. for (int i = 0; i < prototype.NumUpvalues; i++) { byte isLocal = bytecode[ip++]; index = bytecode[ip++]; if (isLocal > 0) { // Make an new upvalue to close over the parent's local variable. closure.Upvalues[i] = Fiber.CaptureUpvalue(stackStart + index); } else { // Use the same upvalue as the current call frame. closure.Upvalues[i] = ((ObjClosure)frame.Fn).Upvalues[index]; } } break; } case Instruction.CLASS: { Obj name = stack[Fiber.StackTop - 2]; ObjClass superclass = stack[Fiber.StackTop - 1] as ObjClass; Obj error = ValidateSuperclass(name, stack[Fiber.StackTop - 1]); if (error != null) { Fiber.Error = error; frame.Ip = ip; if (!HandleRuntimeError()) return false; /* Load Frame */ frame = Fiber.Frames[Fiber.NumFrames - 1]; ip = frame.Ip; stackStart = frame.StackStart; stack = Fiber.Stack; fn = (frame.Fn as ObjFn) ?? (frame.Fn as ObjClosure).Function; bytecode = fn.Bytecode; break; } int numFields = bytecode[ip++]; Obj classObj = new ObjClass(superclass, numFields, name as ObjString); // Don't pop the superclass and name off the stack until the subclass is // done being created, to make sure it doesn't get collected. Fiber.StackTop -= 2; // Now that we know the total number of fields, make sure we don't overflow. if (superclass.NumFields + numFields <= Compiler.MaxFields) { stack[Fiber.StackTop++] = classObj; break; } // Overflow handling frame.Ip = ip; Fiber.Error = Obj.MakeString(string.Format("Class '{0}' may not have more than 255 fields, including inherited ones.", name)); if (!HandleRuntimeError()) return false; /* Load Frame */ frame = Fiber.Frames[Fiber.NumFrames - 1]; ip = frame.Ip; stackStart = frame.StackStart; stack = Fiber.Stack; fn = (frame.Fn as ObjFn) ?? (frame.Fn as ObjClosure).Function; bytecode = fn.Bytecode; break; } case Instruction.METHOD_INSTANCE: case Instruction.METHOD_STATIC: { int symbol = (bytecode[ip] << 8) + bytecode[ip + 1]; ip += 2; ObjClass classObj = stack[Fiber.StackTop - 1] as ObjClass; Obj method = stack[Fiber.StackTop - 2]; bool isStatic = instruction == Instruction.METHOD_STATIC; if (!BindMethod(isStatic, symbol, classObj, method)) { frame.Ip = ip; Fiber.Error = Obj.MakeString("Error while binding method"); if (!HandleRuntimeError()) return false; /* Load Frame */ frame = Fiber.Frames[Fiber.NumFrames - 1]; ip = frame.Ip; stackStart = frame.StackStart; stack = Fiber.Stack; fn = (frame.Fn as ObjFn) ?? (frame.Fn as ObjClosure).Function; bytecode = fn.Bytecode; break; } Fiber.StackTop -= 2; break; } case Instruction.LOAD_MODULE: { Obj name = fn.Constants[(bytecode[ip] << 8) + bytecode[ip + 1]]; ip += 2; Obj result = ImportModule(name); // If it returned a string, it was an error message. if ((result is ObjString)) { frame.Ip = ip; Fiber.Error = result; if (!HandleRuntimeError()) return false; /* Load Frame */ frame = Fiber.Frames[Fiber.NumFrames - 1]; ip = frame.Ip; stackStart = frame.StackStart; stack = Fiber.Stack; fn = (frame.Fn as ObjFn) ?? (frame.Fn as ObjClosure).Function; bytecode = fn.Bytecode; break; } // Make a slot that the module's fiber can use to store its result in. // It ends up getting discarded, but CODE_RETURN expects to be able to // place a value there. if (Fiber.StackTop >= Fiber.Capacity) stack = Fiber.IncreaseStack(); stack[Fiber.StackTop++] = Obj.Null; // If it returned a fiber to execute the module body, switch to it. if (result is ObjFiber) { // Return to this module when that one is done. (result as ObjFiber).Caller = Fiber; frame.Ip = ip; Fiber = (result as ObjFiber); /* Load Frame */ frame = Fiber.Frames[Fiber.NumFrames - 1]; ip = frame.Ip; stackStart = frame.StackStart; stack = Fiber.Stack; fn = (frame.Fn as ObjFn) ?? (frame.Fn as ObjClosure).Function; bytecode = fn.Bytecode; } break; } case Instruction.IMPORT_VARIABLE: { Obj module = fn.Constants[(bytecode[ip] << 8) + bytecode[ip + 1]]; ip += 2; Obj variable = fn.Constants[(bytecode[ip] << 8) + bytecode[ip + 1]]; ip += 2; Obj result; if (ImportVariable(module, variable, out result)) { if (Fiber.StackTop >= Fiber.Capacity) stack = Fiber.IncreaseStack(); stack[Fiber.StackTop++] = result; } else { frame.Ip = ip; Fiber.Error = result; if (!HandleRuntimeError()) return false; /* Load Frame */ frame = Fiber.Frames[Fiber.NumFrames - 1]; ip = frame.Ip; stackStart = frame.StackStart; stack = Fiber.Stack; fn = (frame.Fn as ObjFn) ?? (frame.Fn as ObjClosure).Function; bytecode = fn.Bytecode; } break; } case Instruction.CONSTRUCT: { int stackPosition = Fiber.StackTop - 1 + (Instruction.CALL_0 - (Instruction)bytecode[ip]); ObjClass v = stack[stackPosition] as ObjClass; if (v == null) { Fiber.Error = Obj.MakeString("'this' should be a class."); if (!HandleRuntimeError()) return false; /* Load Frame */ frame = Fiber.Frames[Fiber.NumFrames - 1]; ip = frame.Ip; stackStart = frame.StackStart; stack = Fiber.Stack; fn = (frame.Fn as ObjFn) ?? (frame.Fn as ObjClosure).Function; bytecode = fn.Bytecode; break; } stack[stackPosition] = new ObjInstance(v); } break; case Instruction.FOREIGN_CLASS: // Not yet implemented break; case Instruction.FOREIGN_CONSTRUCT: // Not yet implemented break; case Instruction.END: // A CODE_END should always be preceded by a CODE_RETURN. If we get here, // the compiler generated wrong code. return false; } } // We should only exit this function from an explicit return from CODE_RETURN // or a runtime error. }
private static PrimitiveResult prim_map_iterate(WrenVM vm, ObjFiber fiber, Value[] args) { ObjMap map = (ObjMap)args[0].Obj; if (map.Count() == 0) { args[0] = new Value(false); return PrimitiveResult.Value; } // Start one past the last entry we stopped at. if (args[1].Type == ValueType.Num) { if (args[1].Num < 0) { args[0] = new Value(false); return PrimitiveResult.Value; } int index = (int)args[1].Num; if (index == args[1].Num) { args[0] = index > map.Count() || map.Get(index).Type == ValueType.Undefined ? new Value(false) : new Value(index + 1); return PrimitiveResult.Value; } args[0] = new Value("Iterator must be an integer."); return PrimitiveResult.Error; } // If we're starting the iteration, start at the first used entry. if (args[1].Type == ValueType.Null) { args[0] = new Value(1); return PrimitiveResult.Value; } args[0] = new Value("Iterator must be a number."); return PrimitiveResult.Error; }
static PrimitiveResult prim_map_containsKey(WrenVM vm, ObjFiber fiber, Value[] args) { ObjMap map = (ObjMap)args[0].Obj; if (ValidateKey(args[1])) { Value v = map.Get(args[1]); args[0] = new Value(v.Type != ValueType.Undefined); return PrimitiveResult.Value; } args[0] = new Value("Key must be a value type or fiber."); return PrimitiveResult.Error; }
static PrimitiveResult prim_map_subscriptSetter(WrenVM vm, ObjFiber fiber, Value[] args) { ObjMap map = args[0].Obj as ObjMap; if (ValidateKey(args[1])) { if (map != null) { map.Set(args[1], args[2]); } args[0] = args[2]; return PrimitiveResult.Value; } args[0] = new Value("Key must be a value type or fiber."); return PrimitiveResult.Error; }
static PrimitiveResult prim_map_instantiate(WrenVM vm, ObjFiber fiber, Value[] args) { args[0] = new Value(new ObjMap()); return PrimitiveResult.Value; }
static PrimitiveResult prim_fn_toString(WrenVM vm, ObjFiber fiber, Value[] args) { args[0] = new Value("<fn>"); return PrimitiveResult.Value; }
static PrimitiveResult prim_fn_call16(WrenVM vm, ObjFiber fiber, Value[] args) { return CallFn(args, 16); }
static PrimitiveResult prim_fn_arity(WrenVM vm, ObjFiber fiber, Value[] args) { ObjFn fn = args[0].Obj as ObjFn; args[0] = fn != null ? new Value(fn.Arity) : new Value(0.0); return PrimitiveResult.Value; }
static PrimitiveResult prim_fn_new(WrenVM vm, ObjFiber fiber, Value[] args) { if (args[1].Obj == null || args[1].Obj.Type != ObjType.Fn && args[1].Obj.Type != ObjType.Closure) { args[0] = new Value("Argument must be a function."); return PrimitiveResult.Error; } // The block argument is already a function, so just return it. args[0] = args[1]; return PrimitiveResult.Value; }
static PrimitiveResult prim_fn_instantiate(WrenVM vm, ObjFiber fiber, Value[] args) { // Return the Fn class itself. When we then call "new" on it, it will return // the block. return PrimitiveResult.Value; }
static PrimitiveResult prim_fiber_yield1(WrenVM vm, ObjFiber fiber, Value[] args) { // Unhook this fiber from the one that called it. ObjFiber caller = fiber.Caller; fiber.Caller = null; fiber.CallerIsTrying = false; // If we don't have any other pending fibers, jump all the way out of the // interpreter. if (caller == null) { args[0] = new Value (ValueType.Null); } else { // Make the caller's run method return the argument passed to yield. caller.StoreValue(-1, args[1]); // When the yielding fiber resumes, we'll store the result of the yield call // in its stack. Since Fiber.yield(value) has two arguments (the Fiber class // and the value) and we only need one slot for the result, discard the other // slot now. fiber.StackTop--; // Return the fiber to resume. args[0] = new Value(caller); } return PrimitiveResult.RunFiber; }
static PrimitiveResult prim_list_subscriptSetter(WrenVM vm, ObjFiber fiber, Value[] args) { ObjList list = (ObjList)args[0].Obj; if (args[1].Type == ValueType.Num) { int index = (int)args[1].Num; if (index == args[1].Num) { if (index < 0) { index += list.Count(); } if (list != null && index >= 0 && index < list.Count()) { list.Set(args[2], index); args[0] = args[2]; return PrimitiveResult.Value; } args[0] = new Value("Subscript out of bounds."); return PrimitiveResult.Error; } args[0] = new Value("Subscript must be an integer."); return PrimitiveResult.Error; } args[0] = new Value("Subscript must be a number."); return PrimitiveResult.Error; }
static PrimitiveResult prim_list_add(WrenVM vm, ObjFiber fiber, Value[] args) { ObjList list = args[0].Obj as ObjList; if (list == null) { args[0] = new Value("Trying to add to a non-list"); return PrimitiveResult.Error; } list.Add(args[1]); args[0] = args[1]; return PrimitiveResult.Value; }
static PrimitiveResult prim_map_subscript(WrenVM vm, ObjFiber fiber, Value[] args) { ObjMap map = args[0].Obj as ObjMap; if (ValidateKey(args[1])) { if (map != null) { args[0] = map.Get(args[1]); if (args[0].Type == ValueType.Undefined) { args[0] = new Value (ValueType.Null); } } else { args[0] = new Value (ValueType.Null); } return PrimitiveResult.Value; } args[0] = new Value("Key must be a value type or fiber."); return PrimitiveResult.Error; }
static PrimitiveResult prim_list_clear(WrenVM vm, ObjFiber fiber, Value[] args) { ObjList list = args[0].Obj as ObjList; if (list == null) { args[0] = new Value("Trying to clear a non-list"); return PrimitiveResult.Error; } list.Clear(); args[0] = new Value (ValueType.Null); return PrimitiveResult.Value; }
static PrimitiveResult prim_map_clear(WrenVM vm, ObjFiber fiber, Value[] args) { ObjMap m = args[0].Obj as ObjMap; if (m != null) m.Clear(); args[0] = new Value (ValueType.Null); return PrimitiveResult.Value; }
static PrimitiveResult prim_list_count(WrenVM vm, ObjFiber fiber, Value[] args) { ObjList list = args[0].Obj as ObjList; if (list != null) { args[0] = new Value(list.Count()); return PrimitiveResult.Value; } args[0] = new Value("Trying to clear a non-list"); return PrimitiveResult.Error; }
static PrimitiveResult prim_map_count(WrenVM vm, ObjFiber fiber, Value[] args) { ObjMap m = (ObjMap)args[0].Obj; args[0] = new Value(m.Count()); return PrimitiveResult.Value; }
static PrimitiveResult prim_list_insert(WrenVM vm, ObjFiber fiber, Value[] args) { ObjList list = args[0].Obj as ObjList; if (list != null) { if (args[1].Type == ValueType.Num) { if (args[1].Num == (int)args[1].Num) { int index = (int)args[1].Num; if (index < 0) index += list.Count() + 1; if (index >= 0 && index <= list.Count()) { list.Insert(args[2], index); args[0] = args[2]; return PrimitiveResult.Value; } args[0] = new Value("Index out of bounds."); return PrimitiveResult.Error; } // count + 1 here so you can "insert" at the very end. args[0] = new Value("Index must be an integer."); return PrimitiveResult.Error; } args[0] = new Value("Index must be a number."); return PrimitiveResult.Error; } args[0] = new Value("List cannot be null"); return PrimitiveResult.Error; }
static bool prim_fiber_new(WrenVM vm, Obj[] args, int stackStart) { Obj o = args[stackStart + 1]; if (o is ObjFn || o is ObjClosure) { ObjFiber newFiber = new ObjFiber(o); // The compiler expects the first slot of a function to hold the receiver. // Since a fiber's stack is invoked directly, it doesn't have one, so put it // in here. newFiber.Push(Obj.Null); args[stackStart] = newFiber; return true; } vm.Fiber.Error = Obj.MakeString("Argument must be a function."); return false; }
static PrimitiveResult prim_list_iterate(WrenVM vm, ObjFiber fiber, Value[] args) { ObjList list = (ObjList)args[0].Obj; // If we're starting the iteration, return the first index. if (args[1].Type == ValueType.Null) { if (list.Count() != 0) { args[0] = new Value(0.0); return PrimitiveResult.Value; } args[0] = new Value(false); return PrimitiveResult.Value; } if (args[1].Type == ValueType.Num) { if (args[1].Num == ((int)args[1].Num)) { double index = args[1].Num; if (!(index < 0) && !(index >= list.Count() - 1)) { args[0] = new Value(index + 1); return PrimitiveResult.Value; } // Otherwise, move to the next index. args[0] = new Value(false); return PrimitiveResult.Value; } // Stop if we're out of bounds. args[0] = new Value("Iterator must be an integer."); return PrimitiveResult.Error; } args[0] = new Value("Iterator must be a number."); return PrimitiveResult.Error; }
private ObjFiber LoadModule(Obj name, string source) { ObjModule module = GetModule(name); // See if the module has already been loaded. if (module == null) { module = new ObjModule(name as ObjString); // Store it in the VM's module registry so we don't load the same module // multiple times. _modules.Set(name, module); // Implicitly import the core module. ObjModule coreModule = GetCoreModule(); foreach (ModuleVariable t in coreModule.Variables) { DefineVariable(module, t.Name, t.Container); } } ObjFn fn = Compiler.Compile(this, module, name.ToString(), source, true); if (fn == null) { // TODO: Should we still store the module even if it didn't compile? return null; } ObjFiber moduleFiber = new ObjFiber(fn); // Return the fiber that executes the module. return moduleFiber; }
static PrimitiveResult prim_list_iteratorValue(WrenVM vm, ObjFiber fiber, Value[] args) { ObjList list = (ObjList)args[0].Obj; if (args[1].Type == ValueType.Num) { if (args[1].Num == ((int)args[1].Num)) { int index = (int)args[1].Num; if (index >= 0 && index < list.Count()) { args[0] = list.Get(index); return PrimitiveResult.Value; } args[0] = new Value("Iterator out of bounds."); return PrimitiveResult.Error; } args[0] = new Value("Iterator must be an integer."); return PrimitiveResult.Error; } args[0] = new Value("Iterator must be a number."); return PrimitiveResult.Error; }
// Execute [source] in the context of the core module. private InterpretResult LoadIntoCore(string source) { ObjModule coreModule = GetCoreModule(); ObjFn fn = Compiler.Compile(this, coreModule, "", source, true); if (fn == null) return InterpretResult.CompileError; Fiber = new ObjFiber(fn); return RunInterpreter() ? InterpretResult.Success : InterpretResult.RuntimeError; }
static PrimitiveResult prim_list_removeAt(WrenVM vm, ObjFiber fiber, Value[] args) { ObjList list = args[0].Obj as ObjList; if (list != null) { if (args[1].Type == ValueType.Num) { if (args[1].Num == ((int)args[1].Num)) { int index = (int)args[1].Num; if (index < 0) index += list.Count(); if (index >= 0 && index < list.Count()) { args[0] = list.RemoveAt(index); return PrimitiveResult.Value; } args[0] = new Value("Index out of bounds."); return PrimitiveResult.Error; } args[0] = new Value("Index must be an integer."); return PrimitiveResult.Error; } args[0] = new Value("Index must be a number."); return PrimitiveResult.Error; } args[0] = new Value("List cannot be null"); return PrimitiveResult.Error; }
/* Dirty Hack */ private bool HandleRuntimeError() { ObjFiber f = Fiber; if (f.CallerIsTrying) { f.Caller.SetReturnValue(f.Error); Fiber = f.Caller; return true; } Fiber = null; // TODO: Fix this so that there is no dependancy on the console if (!(f.Error is ObjString)) { f.Error = Obj.MakeString("Error message must be a string."); } Console.Error.WriteLine(f.Error as ObjString); return false; }
static PrimitiveResult prim_list_subscript(WrenVM vm, ObjFiber fiber, Value[] args) { ObjList list = args[0].Obj as ObjList; if (list == null) return PrimitiveResult.Error; if (args[1].Type == ValueType.Num) { int index = (int)args[1].Num; if (index == args[1].Num) { if (index < 0) { index += list.Count(); } if (index >= 0 && index < list.Count()) { args[0] = list.Get(index); return PrimitiveResult.Value; } args[0] = new Value("Subscript out of bounds."); return PrimitiveResult.Error; } args[0] = new Value("Subscript must be an integer."); return PrimitiveResult.Error; } ObjRange r = args[1].Obj as ObjRange; if (r == null) { args[0] = new Value("Subscript must be a number or a range."); return PrimitiveResult.Error; } // TODO: This is seriously broken and needs a rewrite int from = (int)r.From; if (from != r.From) { args[0] = new Value("Range start must be an integer."); return PrimitiveResult.Error; } int to = (int)r.To; if (to != r.To) { args[0] = new Value("Range end must be an integer."); return PrimitiveResult.Error; } if (from < 0) from += list.Count(); if (to < 0) to += list.Count(); int step = to < from ? -1 : 1; if (step > 0 && r.IsInclusive) to += 1; if (step < 0 && !r.IsInclusive) to += 1; // Handle copying an empty list if (list.Count() == 0 && to == (r.IsInclusive ? -1 : 0)) { to = 0; step = 1; } int count = (to - from) * step + (step < 0 ? 1 : 0); if (to < 0 || from + (count * step) > list.Count()) { args[0] = new Value("Range end out of bounds."); return PrimitiveResult.Error; } if (from < 0 || (from >= list.Count() && from > 0)) { args[0] = new Value("Range start out of bounds."); return PrimitiveResult.Error; } ObjList result = new ObjList(count); for (int i = 0; i < count; i++) { result.Add(list.Get(from + (i * step))); } args[0] = new Value(result); return PrimitiveResult.Value; }