//***********************************************************************
            // Performs the calculation of the kth term in the Lucas Sequence.
            // For details of the algorithm, see reference [9].
            //
            // k must be odd.  i.e LSB == 1
            //***********************************************************************

            private static BigInteger[] LucasSequenceHelper(BigInteger P, BigInteger Q,
                                                            BigInteger k, BigInteger n,
                                                            BigInteger constant, int s)
            {
                BigInteger[] result = new BigInteger[3];

                if ((k.data[0] & 0x00000001) == 0)
                    throw (new ArgumentException("Argument k must be odd."));

                int numbits = k.bitCount();
                uint mask = (uint)0x1 << ((numbits & 0x1F) - 1);

                // v = v0, v1 = v1, u1 = u1, Q_k = Q^0

                BigInteger v = 2 % n, Q_k = 1 % n,
                           v1 = P % n, u1 = Q_k;
                bool flag = true;

                for (int i = k.dataLength - 1; i >= 0; i--)     // iterate on the binary expansion of k
                {
                    //Console.WriteLine("round");
                    while (mask != 0)
                    {
                        if (i == 0 && mask == 0x00000001)        // last bit
                            break;

                        if ((k.data[i] & mask) != 0)             // bit is set
                        {
                            // index doubling with addition

                            u1 = (u1 * v1) % n;

                            v = ((v * v1) - (P * Q_k)) % n;
                            v1 = n.BarrettReduction(v1 * v1, n, constant);
                            v1 = (v1 - ((Q_k * Q) << 1)) % n;

                            if (flag)
                                flag = false;
                            else
                                Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);

                            Q_k = (Q_k * Q) % n;
                        }
                        else
                        {
                            // index doubling
                            u1 = ((u1 * v) - Q_k) % n;

                            v1 = ((v * v1) - (P * Q_k)) % n;
                            v = n.BarrettReduction(v * v, n, constant);
                            v = (v - (Q_k << 1)) % n;

                            if (flag)
                            {
                                Q_k = Q % n;
                                flag = false;
                            }
                            else
                                Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
                        }

                        mask >>= 1;
                    }
                    mask = 0x80000000;
                }

                // at this point u1 = u(n+1) and v = v(n)
                // since the last bit always 1, we need to transform u1 to u(2n+1) and v to v(2n+1)

                u1 = ((u1 * v) - Q_k) % n;
                v = ((v * v1) - (P * Q_k)) % n;
                if (flag)
                    flag = false;
                else
                    Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);

                Q_k = (Q_k * Q) % n;


                for (int i = 0; i < s; i++)
                {
                    // index doubling
                    u1 = (u1 * v) % n;
                    v = ((v * v) - (Q_k << 1)) % n;

                    if (flag)
                    {
                        Q_k = Q % n;
                        flag = false;
                    }
                    else
                        Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
                }

                result[0] = u1;
                result[1] = v;
                result[2] = Q_k;

                return result;
            }
            private bool LucasStrongTestHelper(BigInteger thisVal)
            {
                // Do the test (selects D based on Selfridge)
                // Let D be the first element of the sequence
                // 5, -7, 9, -11, 13, ... for which J(D,n) = -1
                // Let P = 1, Q = (1-D) / 4

                long D = 5, sign = -1, dCount = 0;
                bool done = false;

                while (!done)
                {
                    int Jresult = BigInteger.Jacobi(D, thisVal);

                    if (Jresult == -1)
                        done = true;    // J(D, this) = 1
                    else
                    {
                        if (Jresult == 0 && Math.Abs(D) < thisVal)       // divisor found
                            return false;

                        if (dCount == 20)
                        {
                            // check for square
                            BigInteger root = thisVal.sqrt();
                            if (root * root == thisVal)
                                return false;
                        }

                        //Console.WriteLine(D);
                        D = (Math.Abs(D) + 2) * sign;
                        sign = -sign;
                    }
                    dCount++;
                }

                long Q = (1 - D) >> 2;

                /*
                Console.WriteLine("D = " + D);
                Console.WriteLine("Q = " + Q);
                Console.WriteLine("(n,D) = " + thisVal.gcd(D));
                Console.WriteLine("(n,Q) = " + thisVal.gcd(Q));
                Console.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal));
                */

                BigInteger p_add1 = thisVal + 1;
                int s = 0;

                for (int index = 0; index < p_add1.dataLength; index++)
                {
                    uint mask = 0x01;

                    for (int i = 0; i < 32; i++)
                    {
                        if ((p_add1.data[index] & mask) != 0)
                        {
                            index = p_add1.dataLength;      // to break the outer loop
                            break;
                        }
                        mask <<= 1;
                        s++;
                    }
                }

                BigInteger t = p_add1 >> s;

                // calculate constant = b^(2k) / m
                // for Barrett Reduction
                BigInteger constant = new BigInteger();

                int nLen = thisVal.dataLength << 1;
                constant.data[nLen] = 0x00000001;
                constant.dataLength = nLen + 1;

                constant = constant / thisVal;

                BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0);
                bool isPrime = false;

                if ((lucas[0].dataLength == 1 && lucas[0].data[0] == 0) ||
                   (lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
                {
                    // u(t) = 0 or V(t) = 0
                    isPrime = true;
                }

                for (int i = 1; i < s; i++)
                {
                    if (!isPrime)
                    {
                        // doubling of index
                        lucas[1] = thisVal.BarrettReduction(lucas[1] * lucas[1], thisVal, constant);
                        lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal;

                        //lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal;

                        if ((lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
                            isPrime = true;
                    }

                    lucas[2] = thisVal.BarrettReduction(lucas[2] * lucas[2], thisVal, constant);     //Q^k
                }


                if (isPrime)     // additional checks for composite numbers
                {
                    // If n is prime and gcd(n, Q) == 1, then
                    // Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n

                    BigInteger g = thisVal.gcd(Q);
                    if (g.dataLength == 1 && g.data[0] == 1)         // gcd(this, Q) == 1
                    {
                        if ((lucas[2].data[maxLength - 1] & 0x80000000) != 0)
                            lucas[2] += thisVal;

                        BigInteger temp = (Q * BigInteger.Jacobi(Q, thisVal)) % thisVal;
                        if ((temp.data[maxLength - 1] & 0x80000000) != 0)
                            temp += thisVal;

                        if (lucas[2] != temp)
                            isPrime = false;
                    }
                }

                return isPrime;
            }