HasArrays() public méthode

Check if the mesh contains the requested arrays.
public HasArrays ( MeshArrays channels ) : bool
channels MeshArrays A flag containing the array types that a ProBuilder mesh stores.
Résultat bool
        /// <summary>
        /// Collects coincident vertices and returns a rotation calculated from the average normal and bitangent.
        /// </summary>
        /// <param name="mesh">The target mesh.</param>
        /// <param name="indices">Vertex indices to consider in the rotation calculations.</param>
        /// <returns>A rotation calculated from the average normal of each vertex.</returns>
        public static Quaternion GetRotation(ProBuilderMesh mesh, IEnumerable <int> indices)
        {
            if (!mesh.HasArrays(MeshArrays.Normal))
            {
                Normals.CalculateNormals(mesh);
            }

            if (!mesh.HasArrays(MeshArrays.Tangent))
            {
                Normals.CalculateTangents(mesh);
            }

            var normals  = mesh.normalsInternal;
            var tangents = mesh.tangentsInternal;

            var   nrm   = Vector3.zero;
            var   tan   = Vector4.zero;
            float count = 0;

            foreach (var index in indices)
            {
                var n = normals[index];
                var t = tangents[index];

                nrm.x += n.x;
                nrm.y += n.y;
                nrm.z += n.z;

                tan.x += t.x;
                tan.y += t.y;
                tan.z += t.z;
                tan.w += t.w;

                count++;
            }

            nrm.x /= count;
            nrm.y /= count;
            nrm.z /= count;

            tan.x /= count;
            tan.y /= count;
            tan.z /= count;
            tan.w /= count;

            if (nrm == Vector3.zero || tan == Vector4.zero)
            {
                return(mesh.transform.rotation);
            }

            var bit = Vector3.Cross(nrm, tan * tan.w);

            return(mesh.transform.rotation * Quaternion.LookRotation(nrm, bit));
        }
        /// <summary>
        /// Compile a UnityEngine.Mesh from a ProBuilderMesh.
        /// </summary>
        /// <param name="probuilderMesh">The mesh source.</param>
        /// <param name="targetMesh">Destination UnityEngine.Mesh.</param>
        /// <param name="preferredTopology">If specified, the function will try to create topology matching the reqested format (and falling back on triangles where necessary).</param>
        /// <returns>The resulting material array from the compiled faces array. This is suitable to assign to the MeshRenderer.sharedMaterials property.</returns>
        public static void Compile(ProBuilderMesh probuilderMesh, Mesh targetMesh, MeshTopology preferredTopology = MeshTopology.Triangles)
        {
            if (probuilderMesh == null)
            {
                throw new ArgumentNullException("probuilderMesh");
            }

            if (targetMesh == null)
            {
                throw new ArgumentNullException("targetMesh");
            }

            targetMesh.Clear();

            targetMesh.vertices = probuilderMesh.positionsInternal;
            targetMesh.uv       = probuilderMesh.texturesInternal;

            if (probuilderMesh.HasArrays(MeshArrays.Texture2))
            {
                List <Vector4> uvChannel = new List <Vector4>();
                probuilderMesh.GetUVs(2, uvChannel);
                targetMesh.SetUVs(2, uvChannel);
            }

            if (probuilderMesh.HasArrays(MeshArrays.Texture3))
            {
                List <Vector4> uvChannel = new List <Vector4>();
                probuilderMesh.GetUVs(3, uvChannel);
                targetMesh.SetUVs(3, uvChannel);
            }

            targetMesh.normals  = probuilderMesh.GetNormals();
            targetMesh.tangents = probuilderMesh.GetTangents();

            if (probuilderMesh.HasArrays(MeshArrays.Color))
            {
                targetMesh.colors = probuilderMesh.colorsInternal;
            }

            var materialCount = probuilderMesh.GetComponent <Renderer>().sharedMaterials.Length;
            var submeshes     = Submesh.GetSubmeshes(probuilderMesh.facesInternal, materialCount, preferredTopology);

            targetMesh.subMeshCount = submeshes.Length;

            for (int i = 0; i < targetMesh.subMeshCount; i++)
            {
                targetMesh.SetIndices(submeshes[i].m_Indexes, submeshes[i].m_Topology, i, false);
            }

            targetMesh.name = string.Format("pb_Mesh{0}", probuilderMesh.id);
        }
Exemple #3
0
        /// <summary>
        /// Calculate mesh normals without taking into account smoothing groups.
        /// </summary>
        /// <returns>A new array of the vertex normals.</returns>
        /// <seealso cref="CalculateNormals"/>
        static void CalculateHardNormals(ProBuilderMesh mesh)
        {
            var vertexCount = mesh.vertexCount;
            var positions   = mesh.positionsInternal;
            var faces       = mesh.facesInternal;

            // s_CachedIntArray acts as the average count per-normal
            ClearIntArray(vertexCount);

            if (!mesh.HasArrays(MeshArrays.Normal))
            {
                mesh.normalsInternal = new Vector3[vertexCount];
            }

            var normals = mesh.normalsInternal;

            for (int i = 0; i < vertexCount; i++)
            {
                normals[i].x = 0f;
                normals[i].y = 0f;
                normals[i].z = 0f;
            }

            for (int faceIndex = 0, fc = faces.Length; faceIndex < fc; faceIndex++)
            {
                int[] indexes = faces[faceIndex].indexesInternal;

                for (var tri = 0; tri < indexes.Length; tri += 3)
                {
                    int a = indexes[tri], b = indexes[tri + 1], c = indexes[tri + 2];

                    Vector3 cross = Math.Normal(positions[a], positions[b], positions[c]);
                    cross.Normalize();

                    normals[a].x += cross.x;
                    normals[b].x += cross.x;
                    normals[c].x += cross.x;

                    normals[a].y += cross.y;
                    normals[b].y += cross.y;
                    normals[c].y += cross.y;

                    normals[a].z += cross.z;
                    normals[b].z += cross.z;
                    normals[c].z += cross.z;

                    s_CachedIntArray[a]++;
                    s_CachedIntArray[b]++;
                    s_CachedIntArray[c]++;
                }
            }

            for (var i = 0; i < vertexCount; i++)
            {
                normals[i].x = normals[i].x / s_CachedIntArray[i];
                normals[i].y = normals[i].y / s_CachedIntArray[i];
                normals[i].z = normals[i].z / s_CachedIntArray[i];
            }
        }
Exemple #4
0
        public static void CalculateTangents(ProBuilderMesh mesh)
        {
            int vc = mesh.vertexCount;

            if (!mesh.HasArrays(MeshArrays.Tangent))
            {
                mesh.tangentsInternal = new Vector4[vc];
            }

            if (!mesh.HasArrays(MeshArrays.Position) || !mesh.HasArrays(MeshArrays.Texture0))
            {
                return;
            }

            // http://answers.unity3d.com/questions/7789/calculating-tangents-vector4.html
            Vector3[] normals = mesh.GetNormals();

            var positions = mesh.positionsInternal;
            var textures  = mesh.texturesInternal;

            var tan1 = new Vector3[vc];
            var tan2 = new Vector3[vc];

            var tangents = mesh.tangentsInternal;

            foreach (var face in mesh.facesInternal)
            {
                int[] triangles = face.indexesInternal;

                for (int a = 0, c = triangles.Length; a < c; a += 3)
                {
                    long i1 = triangles[a + 0];
                    long i2 = triangles[a + 1];
                    long i3 = triangles[a + 2];

                    Vector3 v1 = positions[i1];
                    Vector3 v2 = positions[i2];
                    Vector3 v3 = positions[i3];

                    Vector2 w1 = textures[i1];
                    Vector2 w2 = textures[i2];
                    Vector2 w3 = textures[i3];

                    float x1 = v2.x - v1.x;
                    float x2 = v3.x - v1.x;
                    float y1 = v2.y - v1.y;
                    float y2 = v3.y - v1.y;
                    float z1 = v2.z - v1.z;
                    float z2 = v3.z - v1.z;

                    float s1 = w2.x - w1.x;
                    float s2 = w3.x - w1.x;
                    float t1 = w2.y - w1.y;
                    float t2 = w3.y - w1.y;

                    float r = 1.0f / (s1 * t2 - s2 * t1);

                    Vector3 sdir = new Vector3((t2 * x1 - t1 * x2) * r, (t2 * y1 - t1 * y2) * r, (t2 * z1 - t1 * z2) * r);
                    Vector3 tdir = new Vector3((s1 * x2 - s2 * x1) * r, (s1 * y2 - s2 * y1) * r, (s1 * z2 - s2 * z1) * r);

                    tan1[i1] += sdir;
                    tan1[i2] += sdir;
                    tan1[i3] += sdir;

                    tan2[i1] += tdir;
                    tan2[i2] += tdir;
                    tan2[i3] += tdir;
                }
            }

            for (long a = 0; a < vc; ++a)
            {
                Vector3 n = normals[a];
                Vector3 t = tan1[a];

                Vector3.OrthoNormalize(ref n, ref t);

                tangents[a].x = t.x;
                tangents[a].y = t.y;
                tangents[a].z = t.z;
                tangents[a].w = (Vector3.Dot(Vector3.Cross(n, t), tan2[a]) < 0.0f) ? -1.0f : 1.0f;
            }
        }