Exemple #1
0
 public FitStarTest(string name, string imagePath, GaussianFitOptions options)
 {
     this.Options = star => options;
     this.Name    = star => $"{name} - {options.Desc(star)}";
     LoadImage(imagePath);
 }
Exemple #2
0
        /// <summary>
        /// Find a sigma value for the Gaussian Point Distribution Function that produces less error
        /// </summary>
        /// <param name="image"></param>
        /// <param name="star"></param>
        /// <param name="starReference"></param>
        /// <param name="options"></param>
        static GaussianFit FindGaussianPSF(ushort[] image, int iWidth, int iHeight, StarInfo star, int starReference, GaussianFitOptions options)
        {
            var peak       = star.Peak;
            var width      = GaussianSigmaFromSample(star.Peak, 2, image[(star.Y + 1) * iWidth + star.X + 1]);
            var widthStep  = 1.0;
            var iterations = 0;

            // happens when the star is saturated
            if (double.IsInfinity(width) || width == 0)
            {
                width = 5.0;
            }

            var x1 = star.X - options.Radius;
            var x2 = star.X + options.Radius;
            var y1 = star.Y - options.Radius;
            var y2 = star.Y + options.Radius;

            if (x1 < 0 || y1 < 0 || x2 > iWidth || y2 > iHeight)
            {
                return(new GaussianFit {
                    Result = GaussianFitResult.Clipped
                });
            }

            for (iterations = 0; iterations < options.MaxIterations && Math.Abs(widthStep) > options.MinimumChangeThreshold; iterations++)
            {
                var direction = GradientTowardsMinimalErrorForGaussian(peak, width, image, iWidth, iHeight, star, options);
                widthStep = options.IterationStepSize * direction[0];
                width     = width + widthStep;

                if (width < 0)
                {
                    width = 1.0;
                }
            }

            return(new GaussianFit
            {
                Width = width,
                Peak = peak,
                Iterations = iterations,
                StarReference = starReference,
                Result = iterations == options.MaxIterations ? GaussianFitResult.IterationsMaxed : GaussianFitResult.StepMinimumReached
            });
        }
Exemple #3
0
 /// <summary>
 ///
 /// </summary>
 /// <param name="image"></param>
 /// <param name="iWidth"></param>
 /// <param name="iHeight"></param>
 /// <param name="star"></param>
 /// <param name="starReference"></param>
 /// <param name="options"></param>
 /// <returns></returns>
 public static GaussianFit FindStarGaussianPSF(ushort[] image, int iWidth, int iHeight, StarInfo star, int starReference, GaussianFitOptions options)
 {
     return(FindGaussianPSF(image, iWidth, iHeight, star, starReference, options));
 }
Exemple #4
0
        /// <summary>
        ///
        /// </summary>
        /// <param name="image"></param>
        /// <param name="stars"></param>
        /// <param name="options"></param>
        /// <returns></returns>
        public static List <GaussianFit> FindStarGaussianPSF(ushort[] image, int iWidth, int iHeight, List <StarInfo> stars, GaussianFitOptions options)
        {
            var results = new List <GaussianFit>();

            foreach (var star in stars)
            {
                results.Add(FindStarGaussianPSF(image, iWidth, iHeight, star, stars.IndexOf(star), options));
            }

            return(results);
        }
Exemple #5
0
        public static double GaussianFitError(double peak, double width, ushort[] pixels, int iWidth, int iHeight, StarInfo star, GaussianFitOptions options)
        {
            var samples = (options.Radius * 2.0) * (options.Radius * 2.0) - 1;
            var x1      = star.X - options.Radius;
            var x2      = star.X + options.Radius;
            var y1      = star.Y - options.Radius;
            var y2      = star.Y + options.Radius;
            var error   = 0.0;

            for (var y = y1; y < y2; y++)
            {
                for (var x = x1; x < x2; x++)
                {
                    if (x == star.X && y == star.Y)
                    {
                        continue;
                    }

                    var distanceSquared = (x - star.X) * (x - star.X) + (y - star.Y) * (y - star.Y);

                    if (distanceSquared <= options.Radius * 2)
                    {
                        var prediction = GaussianAmplitudeFromPSF(distanceSquared, peak, width);

                        error += (prediction - pixels[y * iWidth + x]) * (prediction - pixels[y * iWidth + x]);
                    }
                }
            }

            return(error);
        }
Exemple #6
0
        public static double[] GradientTowardsMinimalErrorForGaussian(double peak, double sigma, ushort[] pixels, int iWidth, int iHeight, StarInfo star, GaussianFitOptions options)
        {
            var vec     = new double[1];
            var samples = (options.Radius * 2.0) * (options.Radius * 2.0) - 1;
            var x1      = star.X - options.Radius;
            var x2      = star.X + options.Radius;
            var y1      = star.Y - options.Radius;
            var y2      = star.Y + options.Radius;

            for (var y = y1; y < y2; y++)
            {
                for (var x = x1; x < x2; x++)
                {
                    if (x == star.X && y == star.Y)
                    {
                        continue;
                    }

                    var distanceSquared = (x - star.X) * (x - star.X) + (y - star.Y) * (y - star.Y);

                    if (distanceSquared <= options.Radius * 2)
                    {
                        var sample      = pixels[y * iWidth + x];
                        var sigmaSample = GaussianSigmaFromSample(peak, distanceSquared, sample);

                        var sChange = GaussianSigmaErrorSlopeFunction(distanceSquared, peak, sigmaSample, sigma);

                        vec[0] += (-1 * sChange);

                        samples++;
                    }
                }
            }

            vec[0] /= samples;

            return(vec);
        }