Exemple #1
0
        public Graph BuildGraph()
        {
            var graph = new Graph().as_default();

            tf_with(tf.name_scope("define_input"), scope =>
            {
                input_data   = tf.placeholder(dtype: tf.float32, name: "input_data");
                label_sbbox  = tf.placeholder(dtype: tf.float32, name: "label_sbbox");
                label_mbbox  = tf.placeholder(dtype: tf.float32, name: "label_mbbox");
                label_lbbox  = tf.placeholder(dtype: tf.float32, name: "label_lbbox");
                true_sbboxes = tf.placeholder(dtype: tf.float32, name: "sbboxes");
                true_mbboxes = tf.placeholder(dtype: tf.float32, name: "mbboxes");
                true_lbboxes = tf.placeholder(dtype: tf.float32, name: "lbboxes");
                trainable    = tf.placeholder(dtype: tf.@bool, name: "training");
            });

            tf_with(tf.name_scope("define_loss"), scope =>
            {
                model   = new YOLOv3(cfg, input_data, trainable);
                net_var = tf.global_variables();
                (giou_loss, conf_loss, prob_loss) = model.compute_loss(
                    label_sbbox, label_mbbox, label_lbbox,
                    true_sbboxes, true_mbboxes, true_lbboxes);
            });

            tf_with(tf.name_scope("define_weight_decay"), scope =>
            {
                var moving_ave = tf.train.ExponentialMovingAverage(moving_ave_decay).apply((RefVariable[])tf.trainable_variables());
            });

            return(graph);
        }
Exemple #2
0
        public Graph BuildGraph()
        {
            var graph = new Graph().as_default();

            tf_with(tf.name_scope("define_input"), scope =>
            {
                input_data   = tf.placeholder(dtype: tf.float32, name: "input_data");
                label_sbbox  = tf.placeholder(dtype: tf.float32, name: "label_sbbox");
                label_mbbox  = tf.placeholder(dtype: tf.float32, name: "label_mbbox");
                label_lbbox  = tf.placeholder(dtype: tf.float32, name: "label_lbbox");
                true_sbboxes = tf.placeholder(dtype: tf.float32, name: "sbboxes");
                true_mbboxes = tf.placeholder(dtype: tf.float32, name: "mbboxes");
                true_lbboxes = tf.placeholder(dtype: tf.float32, name: "lbboxes");
                trainable    = tf.placeholder(dtype: tf.@bool, name: "training");
            });

            tf_with(tf.name_scope("define_loss"), scope =>
            {
                model   = new YOLOv3(cfg, input_data, trainable);
                net_var = tf.global_variables();
                (giou_loss, conf_loss, prob_loss) = model.compute_loss(
                    label_sbbox, label_mbbox, label_lbbox,
                    true_sbboxes, true_mbboxes, true_lbboxes);
                loss = giou_loss + conf_loss + prob_loss;
            });

            Tensor global_step_update = null;

            tf_with(tf.name_scope("learn_rate"), scope =>
            {
                global_step      = tf.Variable(1.0, dtype: tf.float64, trainable: false, name: "global_step");
                var warmup_steps = tf.constant(warmup_periods * steps_per_period,
                                               dtype: tf.float64, name: "warmup_steps");
                var train_steps = tf.constant((first_stage_epochs + second_stage_epochs) * steps_per_period,
                                              dtype: tf.float64, name: "train_steps");

                learn_rate = tf.cond(
                    pred: global_step < warmup_steps,
                    true_fn: delegate
                {
                    return(global_step / warmup_steps * learn_rate_init);
                },
                    false_fn: delegate
                {
                    return(learn_rate_end + 0.5 * (learn_rate_init - learn_rate_end) *
                           (1 + tf.cos(
                                (global_step - warmup_steps) / (train_steps - warmup_steps) * Math.PI)));
                }
                    );

                global_step_update = tf.assign_add(global_step, 1.0f);
            });

            Operation moving_ave = null;

            tf_with(tf.name_scope("define_weight_decay"), scope =>
            {
                var emv    = tf.train.ExponentialMovingAverage(moving_ave_decay);
                var vars   = tf.trainable_variables().Select(x => (RefVariable)x).ToArray();
                moving_ave = emv.apply(vars);
            });

            tf_with(tf.name_scope("define_first_stage_train"), scope =>
            {
            });

            return(graph);
        }
Exemple #3
0
        public Graph BuildGraph()
        {
            var graph = new Graph().as_default();

            tf_with(tf.name_scope("define_input"), scope =>
            {
                input_data   = tf.placeholder(dtype: tf.float32, name: "input_data");
                label_sbbox  = tf.placeholder(dtype: tf.float32, name: "label_sbbox");
                label_mbbox  = tf.placeholder(dtype: tf.float32, name: "label_mbbox");
                label_lbbox  = tf.placeholder(dtype: tf.float32, name: "label_lbbox");
                true_sbboxes = tf.placeholder(dtype: tf.float32, name: "sbboxes");
                true_mbboxes = tf.placeholder(dtype: tf.float32, name: "mbboxes");
                true_lbboxes = tf.placeholder(dtype: tf.float32, name: "lbboxes");
                trainable    = tf.placeholder(dtype: tf.@bool, name: "training");
            });

            tf_with(tf.name_scope("define_loss"), scope =>
            {
                model   = new YOLOv3(cfg, input_data, trainable);
                net_var = tf.global_variables();
                (giou_loss, conf_loss, prob_loss) = model.compute_loss(
                    label_sbbox, label_mbbox, label_lbbox,
                    true_sbboxes, true_mbboxes, true_lbboxes);
                loss = giou_loss + conf_loss + prob_loss;
            });

            Tensor global_step_update = null;

            tf_with(tf.name_scope("learn_rate"), scope =>
            {
                global_step      = tf.Variable(1.0, dtype: tf.float64, trainable: false, name: "global_step");
                var warmup_steps = tf.constant(warmup_periods * steps_per_period,
                                               dtype: tf.float64, name: "warmup_steps");
                var train_steps = tf.constant((first_stage_epochs + second_stage_epochs) * steps_per_period,
                                              dtype: tf.float64, name: "train_steps");

                learn_rate = tf.cond(
                    pred: global_step < warmup_steps,
                    true_fn: delegate
                {
                    return(global_step / warmup_steps * learn_rate_init);
                },
                    false_fn: delegate
                {
                    return(learn_rate_end + 0.5 * (learn_rate_init - learn_rate_end) *
                           (1 + tf.cos(
                                (global_step - warmup_steps) / (train_steps - warmup_steps) * Math.PI)));
                }
                    );

                global_step_update = tf.assign_add(global_step, 1.0f);
            });

            Operation moving_ave = null;

            tf_with(tf.name_scope("define_weight_decay"), scope =>
            {
                var emv    = tf.train.ExponentialMovingAverage(moving_ave_decay);
                var vars   = tf.trainable_variables().Select(x => (RefVariable)x).ToArray();
                moving_ave = emv.apply(vars);
            });

            tf_with(tf.name_scope("define_first_stage_train"), scope =>
            {
                first_stage_trainable_var_list = new List <RefVariable>();
                foreach (var var in tf.trainable_variables())
                {
                    var var_name      = var.op.name;
                    var var_name_mess = var_name.Split('/');
                    if (new[] { "conv_sbbox", "conv_mbbox", "conv_lbbox" }.Contains(var_name_mess[0]))
                    {
                        first_stage_trainable_var_list.Add(var as RefVariable);
                    }
                }

                var adam = tf.train.AdamOptimizer(learn_rate);
                var first_stage_optimizer = adam.minimize(loss, var_list: first_stage_trainable_var_list);
                tf_with(tf.control_dependencies(tf.get_collection <Operation>(tf.GraphKeys.UPDATE_OPS).ToArray()), delegate
                {
                    tf_with(tf.control_dependencies(new ITensorOrOperation[] { first_stage_optimizer, global_step_update }), delegate
                    {
                        tf_with(tf.control_dependencies(new[] { moving_ave }), delegate
                        {
                            train_op_with_frozen_variables = tf.no_op();
                        });
                    });
                });
            });

            tf_with(tf.name_scope("define_second_stage_train"), delegate
            {
                var second_stage_trainable_var_list = tf.trainable_variables().Select(x => x as RefVariable).ToList();
                var adam = tf.train.AdamOptimizer(learn_rate);
                var second_stage_optimizer = adam.minimize(loss, var_list: second_stage_trainable_var_list);
                tf_with(tf.control_dependencies(tf.get_collection <Operation>(tf.GraphKeys.UPDATE_OPS).ToArray()), delegate
                {
                    tf_with(tf.control_dependencies(new ITensorOrOperation[] { second_stage_optimizer, global_step_update }), delegate
                    {
                        tf_with(tf.control_dependencies(new[] { moving_ave }), delegate
                        {
                            train_op_with_all_variables = tf.no_op();
                        });
                    });
                });
            });

            tf_with(tf.name_scope("loader_and_saver"), delegate
            {
                loader = tf.train.Saver(net_var);
                saver  = tf.train.Saver(tf.global_variables(), max_to_keep: 10);
            });

            tf_with(tf.name_scope("summary"), delegate
            {
                tf.summary.scalar("learn_rate", learn_rate);
                tf.summary.scalar("giou_loss", giou_loss);
                tf.summary.scalar("conf_loss", conf_loss);
                tf.summary.scalar("prob_loss", prob_loss);
                tf.summary.scalar("total_loss", loss);
            });

            return(graph);
        }