Wait() public static méthode

public static Wait ( object obj ) : bool
obj object
Résultat bool
Exemple #1
0
        public void Invoke(Action action)
        {
            // Execute now if already on the thread
            if (Thread.CurrentThread == _thread)
            {
                action();
            }
            else
            {
                lock (action)
                {
                    // Schedule action
                    InvokeLater(action);

                    // Wait for action to complete
                    ThreadMonitor.Wait(action);
                }
            }
        }
Exemple #2
0
        public void TestComplexMonitor()
        {
            this.Test(async() =>
            {
                object syncObject = new object();
                bool waiting      = false;
                List <string> log = new List <string>();
                Task t1           = Task.Run(() =>
                {
                    Monitor.Enter(syncObject);
                    log.Add("waiting");
                    waiting = true;
                    Monitor.Wait(syncObject);
                    log.Add("received pulse");
                    Monitor.Exit(syncObject);
                });

                Task t2 = Task.Run(async() =>
                {
                    while (!waiting)
                    {
                        await Task.Delay(1);
                    }

                    Monitor.Enter(syncObject);
                    Monitor.Pulse(syncObject);
                    log.Add("pulsed");
                    Monitor.Exit(syncObject);
                });

                await Task.WhenAll(t1, t2);

                string expected = "waiting, pulsed, received pulse";
                string actual   = string.Join(", ", log);
                Specification.Assert(expected == actual, "ControlledMonitor out of order, '{0}' instead of '{1}'", actual, expected);
            },
                      this.GetConfiguration());
        }
Exemple #3
0
        public void DefaultTest() {

            var messages = 0;
            var warnings = 0;
            var exceptions = 0;
            var task = new Monitor();

            task.Message += (sender, args) => {
                messages++;
            };
            task.Exception += (sender, args) => {
                exceptions++;
            };
            task.Warning += (sender, args) => {
                warnings++;
            };

            task.Execute(token => {
                task.OnMessage("m1");
                task.OnMessage("m2");
                task.OnMessage("m3");

                Thread.Sleep(200);

                task.OnWarning("w1");
                task.OnWarning("w2");

                task.OnException(new Exception());

            });

            Assert.AreEqual(true, task.IsRunning);
            task.Wait();

            Assert.AreEqual(3, messages);
            Assert.AreEqual(2, warnings);
            Assert.AreEqual(1, exceptions);
        }
 /// <summary>
 /// Releases the lock on an object and blocks the current thread until it reacquires
 /// the lock. If the specified time-out interval elapses, the thread enters the ready
 /// queue.
 /// </summary>
 /// <param name="timeout">A System.TimeSpan representing the amount of time to wait before the thread enters
 /// the ready queue.</param>
 /// <returns>True if the lock was reacquired before the specified time elapsed; false if the
 /// lock was reacquired after the specified time elapsed. The method does not return
 /// until the lock is reacquired.</returns>
 public virtual bool Wait(TimeSpan timeout) => SystemMonitor.Wait(this.SyncObject, timeout);
 /// <summary>
 /// Releases the lock on an object and blocks the current thread until it reacquires
 /// the lock. If the specified time-out interval elapses, the thread enters the ready
 /// queue.
 /// </summary>
 /// <param name="millisecondsTimeout">The number of milliseconds to wait before the thread enters the ready queue.</param>
 /// <returns>True if the lock was reacquired before the specified time elapsed; false if the
 /// lock was reacquired after the specified time elapsed. The method does not return
 /// until the lock is reacquired.</returns>
 public virtual bool Wait(int millisecondsTimeout) => SystemMonitor.Wait(this.SyncObject, millisecondsTimeout);
 /// <summary>
 /// Releases the lock on an object and blocks the current thread until it reacquires
 /// the lock.
 /// </summary>
 /// <returns>True if the call returned because the caller reacquired the lock for the specified
 /// object. This method does not return if the lock is not reacquired.</returns>
 public virtual bool Wait() => SystemMonitor.Wait(this.SyncObject);
Exemple #7
0
 /// <summary>
 /// Releases the lock on an object and blocks the current thread until it reacquires
 /// the lock.
 /// </summary>
 /// <returns>True if the call returned because the caller reacquired the lock for the specified
 /// object. This method does not return if the lock is not reacquired.</returns>
 internal virtual bool Wait() => SystemMonitor.Wait(this.SyncObject);
        /// <summary>
        /// Blocks the current thread until the current <see cref="ManualResetEventSlim"/> is set, using a
        /// 32-bit signed integer to measure the time interval, while observing a <see
        /// cref="T:System.Threading.CancellationToken"/>.
        /// </summary>
        /// <param name="millisecondsTimeout">The number of milliseconds to wait, or <see
        /// cref="Timeout.Infinite"/>(-1) to wait indefinitely.</param>
        /// <param name="cancellationToken">The <see cref="T:System.Threading.CancellationToken"/> to
        /// observe.</param>
        /// <returns>true if the <see cref="System.Threading.ManualResetEventSlim"/> was set; otherwise,
        /// false.</returns>
        /// <exception cref="T:System.ArgumentOutOfRangeException"><paramref name="millisecondsTimeout"/> is a
        /// negative number other than -1, which represents an infinite time-out.</exception>
        /// <exception cref="T:System.InvalidOperationException">
        /// The maximum number of waiters has been exceeded.
        /// </exception>
        /// <exception cref="T:System.Threading.OperationCanceledException"><paramref
        /// name="cancellationToken"/> was canceled.</exception>
        public bool Wait(int millisecondsTimeout, CancellationToken cancellationToken)
        {
            ThrowIfDisposed();
            cancellationToken.ThrowIfCancellationRequested(); // an early convenience check

            if (millisecondsTimeout < -1)
            {
                throw new ArgumentOutOfRangeException(nameof(millisecondsTimeout));
            }

            if (!IsSet)
            {
                if (millisecondsTimeout == 0)
                {
                    // For 0-timeouts, we just return immediately.
                    return(false);
                }


                // We spin briefly before falling back to allocating and/or waiting on a true event.
                uint startTime = 0;
                bool bNeedTimeoutAdjustment  = false;
                int  realMillisecondsTimeout = millisecondsTimeout; //this will be adjusted if necessary.

                if (millisecondsTimeout != Timeout.Infinite)
                {
                    // We will account for time spent spinning, so that we can decrement it from our
                    // timeout.  In most cases the time spent in this section will be negligible.  But
                    // we can't discount the possibility of our thread being switched out for a lengthy
                    // period of time.  The timeout adjustments only take effect when and if we actually
                    // decide to block in the kernel below.

                    startTime = TimeoutHelper.GetTime();
                    bNeedTimeoutAdjustment = true;
                }

                // Spin
                int spinCount = SpinCount;
                var spinner   = new SpinWait();
                while (spinner.Count < spinCount)
                {
                    spinner.SpinOnce(sleep1Threshold: -1);

                    if (IsSet)
                    {
                        return(true);
                    }

                    if (spinner.Count >= 100 && spinner.Count % 10 == 0) // check the cancellation token if the user passed a very large spin count
                    {
                        cancellationToken.ThrowIfCancellationRequested();
                    }
                }

                // Now enter the lock and wait.
                EnsureLockObjectCreated();

                // We must register and unregister the token outside of the lock, to avoid deadlocks.
                using (cancellationToken.UnsafeRegister(s_cancellationTokenCallback, this))
                {
                    lock (m_lock)
                    {
                        // Loop to cope with spurious wakeups from other waits being canceled
                        while (!IsSet)
                        {
                            // If our token was canceled, we must throw and exit.
                            cancellationToken.ThrowIfCancellationRequested();

                            //update timeout (delays in wait commencement are due to spinning and/or spurious wakeups from other waits being canceled)
                            if (bNeedTimeoutAdjustment)
                            {
                                realMillisecondsTimeout = TimeoutHelper.UpdateTimeOut(startTime, millisecondsTimeout);
                                if (realMillisecondsTimeout <= 0)
                                {
                                    return(false);
                                }
                            }

                            // There is a race condition that Set will fail to see that there are waiters as Set does not take the lock,
                            // so after updating waiters, we must check IsSet again.
                            // Also, we must ensure there cannot be any reordering of the assignment to Waiters and the
                            // read from IsSet.  This is guaranteed as Waiters{set;} involves an Interlocked.CompareExchange
                            // operation which provides a full memory barrier.
                            // If we see IsSet=false, then we are guaranteed that Set() will see that we are
                            // waiting and will pulse the monitor correctly.

                            Waiters = Waiters + 1;

                            if (IsSet)     //This check must occur after updating Waiters.
                            {
                                Waiters--; //revert the increment.
                                return(true);
                            }

                            // Now finally perform the wait.
                            try
                            {
                                // ** the actual wait **
                                if (!Monitor.Wait(m_lock, realMillisecondsTimeout))
                                {
                                    return(false); //return immediately if the timeout has expired.
                                }
                            }
                            finally
                            {
                                // Clean up: we're done waiting.
                                Waiters = Waiters - 1;
                            }
                            // Now just loop back around, and the right thing will happen.  Either:
                            //     1. We had a spurious wake-up due to some other wait being canceled via a different cancellationToken (rewait)
                            // or  2. the wait was successful. (the loop will break)
                        }
                    }
                }
            } // automatically disposes (and unregisters) the callback

            return(true); //done. The wait was satisfied.
        }