///<summary>
 /// Initializes the pair tester.
 ///</summary>
 ///<param name="shapeA">First shape in the pair.</param>
 ///<param name="shapeB">Second shape in the pair.</param>
 public void Initialize(Collidable shapeA, Collidable shapeB)
 {
     collidableA   = (ConvexCollidable)shapeA;
     collidableB   = (ConvexCollidable)shapeB;
     cachedSimplex = new CachedSimplex {
         State = SimplexState.Point
     };                                                               // new CachedSimplex(informationA.Shape, informationB.Shape, ref informationA.worldTransform, ref informationB.worldTransform);
 }
 ///<summary>
 /// Cleans up the pair tester.
 ///</summary>
 public void CleanUp()
 {
     state               = CollisionState.Separated;
     previousState       = CollisionState.Separated;
     cachedSimplex       = new CachedSimplex();
     localSeparatingAxis = new Vector3();
     collidableA         = null;
     collidableB         = null;
 }
Exemple #3
0
        ///<summary>
        /// Updates the cached simplex with the latest run's results.
        ///</summary>
        ///<param name="simplex">Simplex to update.</param>
        public void UpdateCachedSimplex(ref CachedSimplex simplex)
        {
            simplex.LocalSimplexA = SimplexA;
            switch (State)
            {
            case SimplexState.Point:
                Vector3.Subtract(ref SimplexB.A, ref LocalTransformB.Position, out simplex.LocalSimplexB.A);
                Quaternion conjugate;
                Quaternion.Conjugate(ref LocalTransformB.Orientation, out conjugate);
                Quaternion.Transform(ref simplex.LocalSimplexB.A, ref conjugate, out simplex.LocalSimplexB.A);
                break;

            case SimplexState.Segment:
                Vector3.Subtract(ref SimplexB.A, ref LocalTransformB.Position, out simplex.LocalSimplexB.A);
                Vector3.Subtract(ref SimplexB.B, ref LocalTransformB.Position, out simplex.LocalSimplexB.B);

                Matrix3x3 transform;
                Matrix3x3.CreateFromQuaternion(ref LocalTransformB.Orientation, out transform);
                Matrix3x3.TransformTranspose(ref simplex.LocalSimplexB.A, ref transform, out simplex.LocalSimplexB.A);
                Matrix3x3.TransformTranspose(ref simplex.LocalSimplexB.B, ref transform, out simplex.LocalSimplexB.B);
                break;

            case SimplexState.Triangle:
                Vector3.Subtract(ref SimplexB.A, ref LocalTransformB.Position, out simplex.LocalSimplexB.A);
                Vector3.Subtract(ref SimplexB.B, ref LocalTransformB.Position, out simplex.LocalSimplexB.B);
                Vector3.Subtract(ref SimplexB.C, ref LocalTransformB.Position, out simplex.LocalSimplexB.C);

                Matrix3x3.CreateFromQuaternion(ref LocalTransformB.Orientation, out transform);
                Matrix3x3.TransformTranspose(ref simplex.LocalSimplexB.A, ref transform, out simplex.LocalSimplexB.A);
                Matrix3x3.TransformTranspose(ref simplex.LocalSimplexB.B, ref transform, out simplex.LocalSimplexB.B);
                Matrix3x3.TransformTranspose(ref simplex.LocalSimplexB.C, ref transform, out simplex.LocalSimplexB.C);
                break;

            case SimplexState.Tetrahedron:
                Vector3.Subtract(ref SimplexB.A, ref LocalTransformB.Position, out simplex.LocalSimplexB.A);
                Vector3.Subtract(ref SimplexB.B, ref LocalTransformB.Position, out simplex.LocalSimplexB.B);
                Vector3.Subtract(ref SimplexB.C, ref LocalTransformB.Position, out simplex.LocalSimplexB.C);
                Vector3.Subtract(ref SimplexB.D, ref LocalTransformB.Position, out simplex.LocalSimplexB.D);

                Matrix3x3.CreateFromQuaternion(ref LocalTransformB.Orientation, out transform);
                Matrix3x3.TransformTranspose(ref simplex.LocalSimplexB.A, ref transform, out simplex.LocalSimplexB.A);
                Matrix3x3.TransformTranspose(ref simplex.LocalSimplexB.B, ref transform, out simplex.LocalSimplexB.B);
                Matrix3x3.TransformTranspose(ref simplex.LocalSimplexB.C, ref transform, out simplex.LocalSimplexB.C);
                Matrix3x3.TransformTranspose(ref simplex.LocalSimplexB.D, ref transform, out simplex.LocalSimplexB.D);
                break;
            }
            simplex.State = State;
        }
Exemple #4
0
        ///<summary>
        /// Constructs a new pair simplex.
        ///</summary>
        ///<param name="cachedSimplex">Cached simplex to use to warmstart the simplex.</param>
        ///<param name="localTransformB">Transform of shape B in the local space of A.</param>
        public PairSimplex(ref CachedSimplex cachedSimplex, ref RigidTransform localTransformB)
        {
            //NOTE:
            //USING A CACHED SIMPLEX INVALIDATES ASSUMPTIONS THAT ALLOW SIMPLEX CASES TO BE IGNORED!
            //To get those assumptions back, either DO NOT USE CACHED SIMPLEXES, or
            //VERIFY THE SIMPLEXES.
            //-A point requires no verification.
            //-A segment needs verification that the origin is in front of A in the direction of B.
            //-A triangle needs verification that the origin is within the edge planes and in the direction of C.
            //-A tetrahedron needs verification that the origin is within the edge planes of triangle ABC and is in the direction of D.

            //This simplex implementation will not ignore any cases, so we can warm start safely with one problem.
            //Due to relative movement, the simplex may become degenerate.  Edges could become points, etc.
            //Some protections are built into the simplex cases, but keep an eye out for issues.
            //Most dangerous degeneracy seen so far is tetrahedron.  It fails to find any points on opposing sides due to numerical problems and returns intersection.


            previousDistanceToClosest = float.MaxValue;
            errorTolerance            = 0;
            LocalTransformB           = localTransformB;

            //Transform the SimplexB into the working space of the simplex and compute the working space simplex.
            State    = cachedSimplex.State;
            SimplexA = cachedSimplex.LocalSimplexA;
            SimplexB = new ContributingShapeSimplex();
            U        = 0;
            V        = 0;
            W        = 0;
            switch (State)
            {
            case SimplexState.Point:
                Quaternion.Transform(ref cachedSimplex.LocalSimplexB.A, ref LocalTransformB.Orientation, out SimplexB.A);
                Vector3.Add(ref SimplexB.A, ref LocalTransformB.Position, out SimplexB.A);

                Vector3.Subtract(ref SimplexA.A, ref SimplexB.A, out A);
                B = new Vector3();
                C = new Vector3();
                D = new Vector3();
                break;

            case SimplexState.Segment:
                Matrix3x3 transform;
                Matrix3x3.CreateFromQuaternion(ref localTransformB.Orientation, out transform);
                Matrix3x3.Transform(ref cachedSimplex.LocalSimplexB.A, ref transform, out SimplexB.A);
                Matrix3x3.Transform(ref cachedSimplex.LocalSimplexB.B, ref transform, out SimplexB.B);
                Vector3.Add(ref SimplexB.A, ref LocalTransformB.Position, out SimplexB.A);
                Vector3.Add(ref SimplexB.B, ref LocalTransformB.Position, out SimplexB.B);

                Vector3.Subtract(ref SimplexA.A, ref SimplexB.A, out A);
                Vector3.Subtract(ref SimplexA.B, ref SimplexB.B, out B);
                C = new Vector3();
                D = new Vector3();

                ////Test for degeneracy.
                //float edgeLengthAB;
                //Vector3.DistanceSquared(ref A, ref B, out edgeLengthAB);
                //if (edgeLengthAB < Toolbox.Epsilon)
                //    State = SimplexState.Point;

                break;

            case SimplexState.Triangle:
                Matrix3x3.CreateFromQuaternion(ref localTransformB.Orientation, out transform);
                Matrix3x3.Transform(ref cachedSimplex.LocalSimplexB.A, ref transform, out SimplexB.A);
                Matrix3x3.Transform(ref cachedSimplex.LocalSimplexB.B, ref transform, out SimplexB.B);
                Matrix3x3.Transform(ref cachedSimplex.LocalSimplexB.C, ref transform, out SimplexB.C);
                Vector3.Add(ref SimplexB.A, ref LocalTransformB.Position, out SimplexB.A);
                Vector3.Add(ref SimplexB.B, ref LocalTransformB.Position, out SimplexB.B);
                Vector3.Add(ref SimplexB.C, ref LocalTransformB.Position, out SimplexB.C);

                Vector3.Subtract(ref SimplexA.A, ref SimplexB.A, out A);
                Vector3.Subtract(ref SimplexA.B, ref SimplexB.B, out B);
                Vector3.Subtract(ref SimplexA.C, ref SimplexB.C, out C);
                D = new Vector3();

                ////Test for degeneracy.
                //Vector3 AB, AC;
                //Vector3.Subtract(ref B, ref A, out AB);
                //Vector3.Subtract(ref C, ref A, out AC);
                //Vector3 cross;
                //Vector3.Cross(ref AB, ref AC, out cross);
                ////If the area is small compared to a tolerance (adjusted by the partial perimeter), it's degenerate.
                //if (cross.LengthSquared() < Toolbox.BigEpsilon * (AB.LengthSquared() + AC.LengthSquared()))
                //    State = SimplexState.Point;


                break;

            case SimplexState.Tetrahedron:
                Matrix3x3.CreateFromQuaternion(ref localTransformB.Orientation, out transform);
                Matrix3x3.Transform(ref cachedSimplex.LocalSimplexB.A, ref transform, out SimplexB.A);
                Matrix3x3.Transform(ref cachedSimplex.LocalSimplexB.B, ref transform, out SimplexB.B);
                Matrix3x3.Transform(ref cachedSimplex.LocalSimplexB.C, ref transform, out SimplexB.C);
                Matrix3x3.Transform(ref cachedSimplex.LocalSimplexB.D, ref transform, out SimplexB.D);
                Vector3.Add(ref SimplexB.A, ref LocalTransformB.Position, out SimplexB.A);
                Vector3.Add(ref SimplexB.B, ref LocalTransformB.Position, out SimplexB.B);
                Vector3.Add(ref SimplexB.C, ref LocalTransformB.Position, out SimplexB.C);
                Vector3.Add(ref SimplexB.D, ref LocalTransformB.Position, out SimplexB.D);

                Vector3.Subtract(ref SimplexA.A, ref SimplexB.A, out A);
                Vector3.Subtract(ref SimplexA.B, ref SimplexB.B, out B);
                Vector3.Subtract(ref SimplexA.C, ref SimplexB.C, out C);
                Vector3.Subtract(ref SimplexA.D, ref SimplexB.D, out D);

                ////Test for degeneracy.
                //Vector3 AD;
                //Vector3.Subtract(ref B, ref A, out AB);
                //Vector3.Subtract(ref C, ref A, out AC);
                //Vector3.Subtract(ref D, ref A, out AD);
                //Vector3.Cross(ref AB, ref AC, out cross);
                //float volume;
                //Vector3.Dot(ref cross, ref AD, out volume);

                ////Volume is small compared to partial 'perimeter.'
                //if (volume < Toolbox.BigEpsilon * (AB.LengthSquared() + AC.LengthSquared() + AD.LengthSquared()))
                //    State = SimplexState.Point;
                break;

            default:
                A = new Vector3();
                B = new Vector3();
                C = new Vector3();
                D = new Vector3();
                break;
            }
        }
        private bool DoExternalNear(TriangleShape triangle, out TinyStructList <ContactData> contactList)
        {
            Vector3 closestA, closestB;


            //Don't bother trying to do any clever caching.  The continually transforming simplex makes it very rarely useful.
            //TODO: Initialize the simplex of the GJK method using the 'true' center of the triangle.
            //If left unmodified, the simplex that is used in GJK will just be a point at 0,0,0, which of course is at the origin.
            //This causes an instant-out, always.  Not good!
            //By giving the contributing simplex the average centroid, it has a better guess.
            Vector3 triangleCentroid;

            Vector3.Add(ref triangle.vA, ref triangle.vB, out triangleCentroid);
            Vector3.Add(ref triangleCentroid, ref triangle.vC, out triangleCentroid);
            Vector3.Multiply(ref triangleCentroid, .33333333f, out triangleCentroid);

            var initialSimplex = new CachedSimplex {
                State = SimplexState.Point, LocalSimplexB = { A = triangleCentroid }
            };

            if (GJKToolbox.GetClosestPoints(convex, triangle, ref Toolbox.RigidIdentity, ref Toolbox.RigidIdentity, ref initialSimplex, out closestA, out closestB))
            {
                state = CollisionState.Deep;
                return(DoDeepContact(triangle, out contactList));
            }
            Vector3 displacement;

            Vector3.Subtract(ref closestB, ref closestA, out displacement);
            float distanceSquared = displacement.LengthSquared();
            float margin          = convex.collisionMargin + triangle.collisionMargin;

            contactList = new TinyStructList <ContactData>();
            if (distanceSquared < margin * margin)
            {
                //Try to generate a contact.
                var contact = new ContactData();

                //Determine if the normal points in the appropriate direction given the sidedness of the triangle.
                if (triangle.sidedness != TriangleSidedness.DoubleSided)
                {
                    Vector3 triangleNormal, ab, ac;
                    Vector3.Subtract(ref triangle.vB, ref triangle.vA, out ab);
                    Vector3.Subtract(ref triangle.vC, ref triangle.vA, out ac);
                    Vector3.Cross(ref ab, ref ac, out triangleNormal);
                    float dot;
                    Vector3.Dot(ref triangleNormal, ref displacement, out dot);
                    if (triangle.sidedness == TriangleSidedness.Clockwise && dot > 0)
                    {
                        return(false);
                    }
                    if (triangle.sidedness == TriangleSidedness.Counterclockwise && dot < 0)
                    {
                        return(false);
                    }
                }


                //Displacement is from A to B.  point = A + t * AB, where t = marginA / margin.
                if (margin > Toolbox.Epsilon)                                                                  //This can be zero! It would cause a NaN if unprotected.
                {
                    Vector3.Multiply(ref displacement, convex.collisionMargin / margin, out contact.Position); //t * AB
                }
                else
                {
                    contact.Position = new Vector3();
                }
                Vector3.Add(ref closestA, ref contact.Position, out contact.Position); //A + t * AB.



                contact.Normal = displacement;
                float distance = (float)Math.Sqrt(distanceSquared);
                Vector3.Divide(ref contact.Normal, distance, out contact.Normal);
                contact.PenetrationDepth = margin - distance;



                contactList.Add(ref contact);
                TryToEscape(triangle, ref contact.Position);
                return(true);
            }
            //Too far to make a contact- move back to separation.
            state = CollisionState.ExternalSeparated;
            return(false);
        }
        private bool DoShallowContact(out ContactData contact)
        {
            Vector3 closestA, closestB;

            //RigidTransform transform = RigidTransform.Identity;
            //Vector3 closestAnew, closestBnew;
            //CachedSimplex cachedTest = cachedSimplex;
            //bool intersecting = GJKToolbox.GetClosestPoints(informationA.Shape, informationB.Shape, ref informationA.worldTransform, ref informationB.worldTransform, ref cachedTest, out closestAnew, out closestBnew);

            ////bool otherIntersecting = OldGJKVerifier.GetClosestPointsBetweenObjects(informationA.Shape, informationB.Shape, ref informationA.worldTransform, ref informationB.worldTransform, 0, 0, out closestA, out closestB);
            //bool otherIntersecting = GJKToolbox.GetClosestPoints(informationA.Shape, informationB.Shape, ref informationA.worldTransform, ref informationB.worldTransform, out closestA, out closestB);

            //Vector3 closestAold, closestBold;
            //bool oldIntersecting = OldGJKVerifier.GetClosestPointsBetweenObjects(informationA.Shape, informationB.Shape, ref informationA.worldTransform, ref informationB.worldTransform, 0, 0, out closestAold, out closestBold);

            //if (otherIntersecting != intersecting || (!otherIntersecting && !intersecting &&
            //    Vector3.DistanceSquared(closestAnew, closestBnew) - Vector3.DistanceSquared(closestA, closestB) > .0001f &&
            //    (Vector3.DistanceSquared(closestA, closestAnew) > .0001f ||
            //    Vector3.DistanceSquared(closestB, closestBnew) > .0001f)))// ||
            //    //Math.Abs(Vector3.Dot(closestB - closestA, closestBnew - closestAnew) - Vector3.Dot(closestB - closestA, closestB - closestA)) > Toolbox.Epsilon)))
            //    Debug.WriteLine("Break.");

            //Vector3 sub;
            //Vector3.Subtract(ref closestA, ref closestB, out sub);
            //if (sub.LengthSquared() < Toolbox.Epsilon)

            if (UseSimplexCaching)
            {
                GJKToolbox.GetClosestPoints(collidableA.Shape, collidableB.Shape, ref collidableA.worldTransform, ref collidableB.worldTransform, ref cachedSimplex, out closestA, out closestB);
            }
            else
            {
                //The initialization of the pair creates a pretty decent simplex to start from.
                //Just don't try to update it.
                CachedSimplex preInitializedSimplex = cachedSimplex;
                GJKToolbox.GetClosestPoints(collidableA.Shape, collidableB.Shape, ref collidableA.worldTransform, ref collidableB.worldTransform, ref preInitializedSimplex, out closestA, out closestB);
            }

            Vector3 displacement;

            Vector3.Subtract(ref closestB, ref closestA, out displacement);
            float distanceSquared = displacement.LengthSquared();

            if (distanceSquared < Toolbox.Epsilon)
            {
                state = CollisionState.DeepContact;
                return(DoDeepContact(out contact));
            }

            localDirection = displacement; //Use this as the direction for future deep contacts.
            float margin = collidableA.Shape.collisionMargin + collidableB.Shape.collisionMargin;


            if (distanceSquared < margin * margin)
            {
                //Generate a contact.
                contact = new ContactData();
                //Displacement is from A to B.  point = A + t * AB, where t = marginA / margin.
                if (margin > Toolbox.Epsilon)                                                                             //Avoid a NaN!
                {
                    Vector3.Multiply(ref displacement, collidableA.Shape.collisionMargin / margin, out contact.Position); //t * AB
                }
                else
                {
                    contact.Position = new Vector3();
                }

                Vector3.Add(ref closestA, ref contact.Position, out contact.Position); //A + t * AB.

                contact.Normal = displacement;
                float distance = (float)Math.Sqrt(distanceSquared);
                Vector3.Divide(ref contact.Normal, distance, out contact.Normal);
                contact.PenetrationDepth = margin - distance;
                return(true);
            }
            //Too shallow to make a contact- move back to separation.
            state   = CollisionState.Separated;
            contact = new ContactData();
            return(false);
        }