/// <summary>
        /// Adds padding to the input data and returns the padded data.
        /// </summary>
        /// <param name="dataBytes">Data to be padded prior to encryption</param>
        /// <param name="params">RSA Parameters used for padding computation</param>
        /// <returns>Padded message</returns>
        public byte[] EncodeMessage(byte[] dataBytes, RSAParameters @params)
        {
            //Determine if we can add padding.
            if (dataBytes.Length > GetMaxMessageLength(@params))
            {
                throw new CryptographicException("Data length is too long.  Increase your key size or consider encrypting less data.");
            }

            int padLength = @params.N.Length - dataBytes.Length - 3;
            BigInteger biRnd = new BigInteger();
            biRnd.genRandomBits(padLength * 8, new Random(DateTime.Now.Millisecond));

            byte[] bytRandom = null;
            bytRandom = biRnd.getBytes();

            int z1 = bytRandom.Length;

            //Make sure the bytes are all > 0.
            for (int i = 0; i <= bytRandom.Length - 1; i++)
            {
                if (bytRandom[i] == 0x00)
                {
                    bytRandom[i] = 0x01;
                }
            }

            byte[] result = new byte[@params.N.Length];


            //Add the starting 0x00 byte
            result[0] = 0x00;

            //Add the version code 0x02 byte
            result[1] = 0x02;

            for (int i = 0; i <= bytRandom.Length - 1; i++)
            {
                z1 = i + 2;
                result[z1] = bytRandom[i];
            }

            //Add the trailing 0 byte after the padding.
            result[bytRandom.Length + 2] = 0x00;

            //This starting index for the unpadded data.
            int idx = bytRandom.Length + 3;

            //Copy the unpadded data to the padded byte array.
            dataBytes.CopyTo(result, idx);

            return result;
        }
        //***********************************************************************
        // Probabilistic prime test based on Rabin-Miller's
        //
        // for any p > 0 with p - 1 = 2^s * t
        //
        // p is probably prime (strong pseudoprime) if for any a < p,
        // 1) a^t mod p = 1 or
        // 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
        //
        // Otherwise, p is composite.
        //
        // Returns
        // -------
        // True if "this" is a strong pseudoprime to randomly chosen
        // bases.  The number of chosen bases is given by the "confidence"
        // parameter.
        //
        // False if "this" is definitely NOT prime.
        //
        //***********************************************************************

        internal bool RabinMillerTest(int confidence)
        {
            BigInteger thisVal;
            if ((this.data[maxLength - 1] & 0x80000000) != 0)        // negative
                thisVal = -this;
            else
                thisVal = this;

            if (thisVal.dataLength == 1)
            {
                // test small numbers
                if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
                    return false;
                else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
                    return true;
            }

            if ((thisVal.data[0] & 0x1) == 0)     // even numbers
                return false;


            // calculate values of s and t
            BigInteger p_sub1 = thisVal - (new BigInteger(1));
            int s = 0;

            for (int index = 0; index < p_sub1.dataLength; index++)
            {
                uint mask = 0x01;

                for (int i = 0; i < 32; i++)
                {
                    if ((p_sub1.data[index] & mask) != 0)
                    {
                        index = p_sub1.dataLength;      // to break the outer loop
                        break;
                    }
                    mask <<= 1;
                    s++;
                }
            }

            BigInteger t = p_sub1 >> s;

            int bits = thisVal.bitCount();
            BigInteger a = new BigInteger();
            Random rand = new Random();

            for (int round = 0; round < confidence; round++)
            {
                bool done = false;

                while (!done)		// generate a < n
                {
                    int testBits = 0;

                    // make sure "a" has at least 2 bits
                    while (testBits < 2)
                        testBits = (int)(rand.NextDouble() * bits);

                    a.genRandomBits(testBits, rand);

                    int byteLen = a.dataLength;

                    // make sure "a" is not 0
                    if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
                        done = true;
                }

                // check whether a factor exists (fix for version 1.03)
                BigInteger gcdTest = a.gcd(thisVal);
                if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
                    return false;

                BigInteger b = a.modPow(t, thisVal);

                bool result = false;

                if (b.dataLength == 1 && b.data[0] == 1)         // a^t mod p = 1
                    result = true;

                for (int j = 0; result == false && j < s; j++)
                {
                    if (b == p_sub1)         // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
                    {
                        result = true;
                        break;
                    }

                    b = (b * b) % thisVal;
                }

                if (result == false)
                    return false;
            }
            return true;
        }
 private byte[] decryptData(byte[] dataBytes, byte[] bytExponent, byte[] bytModulus)
 {
     BigInteger oEncData = new BigInteger(dataBytes, dataBytes.Length);
     return oEncData.modPow(new BigInteger(bytExponent), new BigInteger(bytModulus)).getBytesRaw();
 }
        private void OnPrimeGenerated(Object sender, RunWorkerCompletedEventArgs e)
        {
            m_primeProgress += 50;

            if (m_primeProgress == 100)
            {
                //Verify that P and Q are not equal...if they are, we need to regenerate Q
                //Handle the case where Q and P might end up being equal.  This will run 
                //the worker again using the same settings as before.
                BigInteger biP = new BigInteger(m_RSAParams.P);
                BigInteger biQ = new BigInteger(m_RSAParams.Q);

                if (biP == biQ)
                {
                    m_primeProgress = 50;
                    m_worker2.DoWork += Generate_Q;
                    m_worker2.RunWorkerAsync();
                    return;
                }

                if (biP < biQ)
                {
                    BigInteger biTmp = new BigInteger(biP);
                    biP = biQ;
                    biQ = biTmp;
                    m_RSAParams.P = biP.getBytesRaw();
                    m_RSAParams.Q = biQ.getBytesRaw();
                }

                BuildKeys();
            }


        }
        private void Generate_Q(Object sender, DoWorkEventArgs e)
        {
            DateTime dt = DateTime.Now;
            int iSeed = (dt.Year + dt.Second + dt.Minute + dt.Millisecond) / 3;

            byte[] tmp = new byte[m_bitLength + 1];
            tmp = new BigInteger(BigInteger.genPseudoPrime(m_bitLength, new Random(iSeed))).getBytesRaw();


            m_RSAParams.Q = tmp;
        }
Exemple #6
0
        /// <summary>
        /// Adds padding to the input data and returns the padded data.
        /// </summary>
        /// <param name="dataBytes">Data to be padded prior to encryption</param>
        /// <param name="params">RSA Parameters used for padding computation</param>
        /// <returns>Padded message</returns>
        public byte[] EncodeMessage(byte[] dataBytes, RSAParameters @params)
        {
            //Iterator
            int i = 0;

            //Get the size of the data to be encrypted
            m_mLen = dataBytes.Length;

            //Get the size of the public modulus (will serve as max length for cipher text)
            m_k = @params.N.Length;

            if (m_mLen > GetMaxMessageLength(@params))
            {
                throw new CryptographicException("Bad Data.");
            }

            //Generate the random octet seed (same length as hash)
            BigInteger biSeed = new BigInteger();
            biSeed.genRandomBits(m_hLen * 8, new Random());
            byte[] bytSeed = biSeed.getBytesRaw();

            //Make sure all of the bytes are greater than 0.
            for (i = 0; i <= bytSeed.Length - 1; i++)
            {
                if (bytSeed[i] == 0x00)
                {
                    //Replacing with the prime byte 17, no real reason...just picked at random.
                    bytSeed[i] = 0x17;
                }
            }

            //Mask the seed with MFG Function(SHA1 Hash)
            //This is the mask to be XOR'd with the DataBlock below.
            byte[] dbMask = Mathematics.OAEPMGF(bytSeed, m_k - m_hLen - 1, m_hLen, m_hashProvider);

            //Compute the length needed for PS (zero padding) and
            //fill a byte array to the computed length
            int psLen = GetMaxMessageLength(@params) - m_mLen;

            //Generate the SHA1 hash of an empty L (Label).  Label is not used for this
            //application of padding in the RSA specification.
            byte[] lHash = m_hashProvider.ComputeHash(System.Text.Encoding.UTF8.GetBytes(string.Empty.ToCharArray()));

            //Create a dataBlock which will later be masked.  The
            //data block includes the concatenated hash(L), PS,
            //a 0x01 byte, and the message.
            int dbLen = m_hLen + psLen + 1 + m_mLen;
            byte[] dataBlock = new byte[dbLen];

            int cPos = 0;
            //Current position

            //Add the L Hash to the data blcok
            for (i = 0; i <= lHash.Length - 1; i++)
            {
                dataBlock[cPos] = lHash[i];
                cPos += 1;
            }

            //Add the zero padding
            for (i = 0; i <= psLen - 1; i++)
            {
                dataBlock[cPos] = 0x00;
                cPos += 1;
            }

            //Add the 0x01 byte
            dataBlock[cPos] = 0x01;
            cPos += 1;

            //Add the message
            for (i = 0; i <= dataBytes.Length - 1; i++)
            {
                dataBlock[cPos] = dataBytes[i];
                cPos += 1;
            }

            //Create the masked data block.
            byte[] maskedDB = Mathematics.BitwiseXOR(dbMask, dataBlock);

            //Create the seed mask
            byte[] seedMask = Mathematics.OAEPMGF(maskedDB, m_hLen, m_hLen, m_hashProvider);

            //Create the masked seed
            byte[] maskedSeed = Mathematics.BitwiseXOR(bytSeed, seedMask);

            //Create the resulting cipher - starting with a 0 byte.
            byte[] result = new byte[@params.N.Length];
            result[0] = 0x00;

            //Add the masked seed
            maskedSeed.CopyTo(result, 1);

            //Add the masked data block
            maskedDB.CopyTo(result, maskedSeed.Length + 1);

            return result;
        }
        //***********************************************************************
        // Overloading of the NEGATE operator (2's complement)
        //***********************************************************************

        public static BigInteger operator -(BigInteger bi1)
        {
            // handle neg of zero separately since it'll cause an overflow
            // if we proceed.

            if (bi1.dataLength == 1 && bi1.data[0] == 0)
                return (new BigInteger());

            BigInteger result = new BigInteger(bi1);

            // 1's complement
            for (int i = 0; i < maxLength; i++)
                result.data[i] = (uint)(~(bi1.data[i]));

            // add one to result of 1's complement
            long val, carry = 1;
            int index = 0;

            while (carry != 0 && index < maxLength)
            {
                val = (long)(result.data[index]);
                val++;

                result.data[index] = (uint)(val & 0xFFFFFFFF);
                carry = val >> 32;

                index++;
            }

            if ((bi1.data[maxLength - 1] & 0x80000000) == (result.data[maxLength - 1] & 0x80000000))
                throw (new ArithmeticException("Overflow in negation.\n"));

            result.dataLength = maxLength;

            while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                result.dataLength--;
            return result;
        }
        //***********************************************************************
        // Overloading of unary >> operators
        //***********************************************************************

        public static BigInteger operator >>(BigInteger bi1, int shiftVal)
        {
            BigInteger result = new BigInteger(bi1);
            result.dataLength = shiftRight(result.data, shiftVal);


            if ((bi1.data[maxLength - 1] & 0x80000000) != 0) // negative
            {
                for (int i = maxLength - 1; i >= result.dataLength; i--)
                    result.data[i] = 0xFFFFFFFF;

                uint mask = 0x80000000;
                for (int i = 0; i < 32; i++)
                {
                    if ((result.data[result.dataLength - 1] & mask) != 0)
                        break;

                    result.data[result.dataLength - 1] |= mask;
                    mask >>= 1;
                }
                result.dataLength = maxLength;
            }

            return result;
        }
        //***********************************************************************
        // Returns the modulo inverse of this.  Throws ArithmeticException if
        // the inverse does not exist.  (i.e. gcd(this, modulus) != 1)
        //***********************************************************************

        internal BigInteger modInverse(BigInteger modulus)
        {
            BigInteger[] p = { 0, 1 };
            BigInteger[] q = new BigInteger[2];    // quotients
            BigInteger[] r = { 0, 0 };             // remainders

            int step = 0;

            BigInteger a = modulus;
            BigInteger b = this;

            while (b.dataLength > 1 || (b.dataLength == 1 && b.data[0] != 0))
            {
                BigInteger quotient = new BigInteger();
                BigInteger remainder = new BigInteger();

                if (step > 1)
                {
                    BigInteger pval = (p[0] - (p[1] * q[0])) % modulus;
                    p[0] = p[1];
                    p[1] = pval;
                }

                if (b.dataLength == 1)
                    singleByteDivide(a, b, quotient, remainder);
                else
                    multiByteDivide(a, b, quotient, remainder);

                q[0] = q[1];
                r[0] = r[1];
                q[1] = quotient; r[1] = remainder;

                a = b;
                b = remainder;

                step++;
            }

            if (r[0].dataLength > 1 || (r[0].dataLength == 1 && r[0].data[0] != 1))
                throw (new ArithmeticException("No inverse!"));

            BigInteger result = ((p[0] - (p[1] * q[0])) % modulus);

            if ((result.data[maxLength - 1] & 0x80000000) != 0)
                result += modulus;  // get the least positive modulus

            return result;
        }
        //***********************************************************************
        // Generates a random number with the specified number of bits such
        // that gcd(number, this) = 1
        //***********************************************************************

        internal BigInteger genCoPrime(int bits, Random rand)
        {
            bool done = false;
            BigInteger result = new BigInteger();

            while (!done)
            {
                result.genRandomBits(bits, rand);

                // gcd test
                BigInteger g = result.gcd(this);
                if (g.dataLength == 1 && g.data[0] == 1)
                    done = true;
            }

            return result;
        }
        //***********************************************************************
        // Generates a positive BigInteger that is probably prime.
        // Overloaded to use the isProbablePrime method with no confidence value
        //***********************************************************************

        internal static BigInteger genPseudoPrime(int bits, Random rand)
        {
            BigInteger result = new BigInteger();
            bool done = false;

            while (!done)
            {
                result.genRandomBits(bits, rand);
                result.data[0] |= 0x01;		// make it odd

                // prime test
                done = result.isProbablePrime();
            }
            return result;
        }
        //***********************************************************************
        // Computes the Jacobi Symbol for a and b.
        // Algorithm adapted from [3] and [4] with some optimizations
        //***********************************************************************

        internal static int Jacobi(BigInteger a, BigInteger b)
        {
            // Jacobi defined only for odd integers
            if ((b.data[0] & 0x1) == 0)
                throw (new ArgumentException("Jacobi defined only for odd integers."));

            if (a >= b) a %= b;
            if (a.dataLength == 1 && a.data[0] == 0) return 0;  // a == 0
            if (a.dataLength == 1 && a.data[0] == 1) return 1;  // a == 1

            if (a < 0)
            {
                if ((((b - 1).data[0]) & 0x2) == 0)       //if( (((b-1) >> 1).data[0] & 0x1) == 0)
                    return Jacobi(-a, b);
                else
                    return -Jacobi(-a, b);
            }

            int e = 0;
            for (int index = 0; index < a.dataLength; index++)
            {
                uint mask = 0x01;

                for (int i = 0; i < 32; i++)
                {
                    if ((a.data[index] & mask) != 0)
                    {
                        index = a.dataLength;      // to break the outer loop
                        break;
                    }
                    mask <<= 1;
                    e++;
                }
            }

            BigInteger a1 = a >> e;

            int s = 1;
            if ((e & 0x1) != 0 && ((b.data[0] & 0x7) == 3 || (b.data[0] & 0x7) == 5))
                s = -1;

            if ((b.data[0] & 0x3) == 3 && (a1.data[0] & 0x3) == 3)
                s = -s;

            if (a1.dataLength == 1 && a1.data[0] == 1)
                return s;
            else
                return (s * Jacobi(b % a1, a1));
        }
        internal bool LucasStrongTestHelper(BigInteger thisVal)
        {
            // Do the test (selects D based on Selfridge)
            // Let D be the first element of the sequence
            // 5, -7, 9, -11, 13, ... for which J(D,n) = -1
            // Let P = 1, Q = (1-D) / 4

            long D = 5, sign = -1, dCount = 0;
            bool done = false;

            while (!done)
            {
                int Jresult = BigInteger.Jacobi(D, thisVal);

                if (Jresult == -1)
                    done = true;    // J(D, this) = 1
                else
                {
                    if (Jresult == 0 && Math.Abs(D) < thisVal)       // divisor found
                        return false;

                    if (dCount == 20)
                    {
                        // check for square
                        BigInteger root = thisVal.sqrt();
                        if (root * root == thisVal)
                            return false;
                    }

                    //Console.WriteLine(D);
                    D = (Math.Abs(D) + 2) * sign;
                    sign = -sign;
                }
                dCount++;
            }

            long Q = (1 - D) >> 2;

            BigInteger p_add1 = thisVal + 1;
            int s = 0;

            for (int index = 0; index < p_add1.dataLength; index++)
            {
                uint mask = 0x01;

                for (int i = 0; i < 32; i++)
                {
                    if ((p_add1.data[index] & mask) != 0)
                    {
                        index = p_add1.dataLength;      // to break the outer loop
                        break;
                    }
                    mask <<= 1;
                    s++;
                }
            }

            BigInteger t = p_add1 >> s;

            // calculate constant = b^(2k) / m
            // for Barrett Reduction
            BigInteger constant = new BigInteger();

            int nLen = thisVal.dataLength << 1;
            constant.data[nLen] = 0x00000001;
            constant.dataLength = nLen + 1;

            constant = constant / thisVal;

            BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0);
            bool isPrime = false;

            if ((lucas[0].dataLength == 1 && lucas[0].data[0] == 0) ||
               (lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
            {
                // u(t) = 0 or V(t) = 0
                isPrime = true;
            }

            for (int i = 1; i < s; i++)
            {
                if (!isPrime)
                {
                    // doubling of index
                    lucas[1] = thisVal.BarrettReduction(lucas[1] * lucas[1], thisVal, constant);
                    lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal;

                    if ((lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
                        isPrime = true;
                }

                lucas[2] = thisVal.BarrettReduction(lucas[2] * lucas[2], thisVal, constant);     //Q^k
            }


            if (isPrime)     // additional checks for composite numbers
            {
                // If n is prime and gcd(n, Q) == 1, then
                // Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n

                BigInteger g = thisVal.gcd(Q);
                if (g.dataLength == 1 && g.data[0] == 1)         // gcd(this, Q) == 1
                {
                    if ((lucas[2].data[maxLength - 1] & 0x80000000) != 0)
                        lucas[2] += thisVal;

                    BigInteger temp = (Q * BigInteger.Jacobi(Q, thisVal)) % thisVal;
                    if ((temp.data[maxLength - 1] & 0x80000000) != 0)
                        temp += thisVal;

                    if (lucas[2] != temp)
                        isPrime = false;
                }
            }

            return isPrime;
        }
        //***********************************************************************
        // Constructor (Default value provided by a string of digits of the
        //              specified base)
        //
        // Example (base 10)
        // -----------------
        // To initialize "a" with the default value of 1234 in base 10
        //      BigInteger a = new BigInteger("1234", 10)
        //
        // To initialize "a" with the default value of -1234
        //      BigInteger a = new BigInteger("-1234", 10)
        //
        // Example (base 16)
        // -----------------
        // To initialize "a" with the default value of 0x1D4F in base 16
        //      BigInteger a = new BigInteger("1D4F", 16)
        //
        // To initialize "a" with the default value of -0x1D4F
        //      BigInteger a = new BigInteger("-1D4F", 16)
        //
        // Note that string values are specified in the <sign><magnitude>
        // format.
        //
        //***********************************************************************

        public BigInteger(string value, int radix)
        {
            BigInteger multiplier = new BigInteger(1);
            BigInteger result = new BigInteger();
            value = (value.ToUpper()).Trim();
            int limit = 0;

            if (value[0] == '-')
                limit = 1;

            for (int i = value.Length - 1; i >= limit; i--)
            {
                int posVal = (int)value[i];

                if (posVal >= '0' && posVal <= '9')
                    posVal -= '0';
                else if (posVal >= 'A' && posVal <= 'Z')
                    posVal = (posVal - 'A') + 10;
                else
                    posVal = 9999999;       // arbitrary large


                if (posVal >= radix)
                    throw (new ArithmeticException("Invalid string in constructor."));
                else
                {
                    if (value[0] == '-')
                        posVal = -posVal;

                    result = result + (multiplier * posVal);

                    if ((i - 1) >= limit)
                        multiplier = multiplier * radix;
                }
            }

            if (value[0] == '-')     // negative values
            {
                if ((result.data[maxLength - 1] & 0x80000000) == 0)
                    throw (new ArithmeticException("Negative underflow in constructor."));
            }
            else    // positive values
            {
                if ((result.data[maxLength - 1] & 0x80000000) != 0)
                    throw (new ArithmeticException("Positive overflow in constructor."));
            }

            data = new uint[maxLength];
            for (int i = 0; i < result.dataLength; i++)
                data[i] = result.data[i];

            dataLength = result.dataLength;
        }
        //***********************************************************************
        // Probabilistic prime test based on Solovay-Strassen (Euler Criterion)
        //
        // p is probably prime if for any a < p (a is not multiple of p),
        // a^((p-1)/2) mod p = J(a, p)
        //
        // where J is the Jacobi symbol.
        //
        // Otherwise, p is composite.
        //
        // Returns
        // -------
        // True if "this" is a Euler pseudoprime to randomly chosen
        // bases.  The number of chosen bases is given by the "confidence"
        // parameter.
        //
        // False if "this" is definitely NOT prime.
        //
        //***********************************************************************

        internal bool SolovayStrassenTest(int confidence)
        {
            BigInteger thisVal;
            if ((this.data[maxLength - 1] & 0x80000000) != 0)        // negative
                thisVal = -this;
            else
                thisVal = this;

            if (thisVal.dataLength == 1)
            {
                // test small numbers
                if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
                    return false;
                else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
                    return true;
            }

            if ((thisVal.data[0] & 0x1) == 0)     // even numbers
                return false;


            int bits = thisVal.bitCount();
            BigInteger a = new BigInteger();
            BigInteger p_sub1 = thisVal - 1;
            BigInteger p_sub1_shift = p_sub1 >> 1;

            Random rand = new Random();

            for (int round = 0; round < confidence; round++)
            {
                bool done = false;

                while (!done)		// generate a < n
                {
                    int testBits = 0;

                    // make sure "a" has at least 2 bits
                    while (testBits < 2)
                        testBits = (int)(rand.NextDouble() * bits);

                    a.genRandomBits(testBits, rand);

                    int byteLen = a.dataLength;

                    // make sure "a" is not 0
                    if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
                        done = true;
                }

                // check whether a factor exists (fix for version 1.03)
                BigInteger gcdTest = a.gcd(thisVal);
                if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
                    return false;

                // calculate a^((p-1)/2) mod p

                BigInteger expResult = a.modPow(p_sub1_shift, thisVal);
                if (expResult == p_sub1)
                    expResult = -1;

                // calculate Jacobi symbol
                BigInteger jacob = Jacobi(a, thisVal);

                // if they are different then it is not prime
                if (expResult != jacob)
                    return false;
            }

            return true;
        }
        //***********************************************************************
        // Overloading of multiplication operator
        //***********************************************************************

        public static BigInteger operator *(BigInteger bi1, BigInteger bi2)
        {
            int lastPos = maxLength - 1;
            bool bi1Neg = false, bi2Neg = false;

            // take the absolute value of the inputs
            try
            {
                if ((bi1.data[lastPos] & 0x80000000) != 0)     // bi1 negative
                {
                    bi1Neg = true; bi1 = -bi1;
                }
                if ((bi2.data[lastPos] & 0x80000000) != 0)     // bi2 negative
                {
                    bi2Neg = true; bi2 = -bi2;
                }
            }
            catch (Exception) { }

            BigInteger result = new BigInteger();

            // multiply the absolute values
            try
            {
                for (int i = 0; i < bi1.dataLength; i++)
                {
                    if (bi1.data[i] == 0) continue;

                    ulong mcarry = 0;
                    for (int j = 0, k = i; j < bi2.dataLength; j++, k++)
                    {
                        // k = i + j
                        ulong val = ((ulong)bi1.data[i] * (ulong)bi2.data[j]) +
                                     (ulong)result.data[k] + mcarry;

                        result.data[k] = (uint)(val & 0xFFFFFFFF);
                        mcarry = (val >> 32);
                    }

                    if (mcarry != 0)
                        result.data[i + bi2.dataLength] = (uint)mcarry;
                }
            }
            catch (Exception)
            {
                throw (new ArithmeticException("Multiplication overflow."));
            }


            result.dataLength = bi1.dataLength + bi2.dataLength;
            if (result.dataLength > maxLength)
                result.dataLength = maxLength;

            while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                result.dataLength--;

            // overflow check (result is -ve)
            if ((result.data[lastPos] & 0x80000000) != 0)
            {
                if (bi1Neg != bi2Neg && result.data[lastPos] == 0x80000000)    // different sign
                {
                    // handle the special case where multiplication produces
                    // a max negative number in 2's complement.

                    if (result.dataLength == 1)
                        return result;
                    else
                    {
                        bool isMaxNeg = true;
                        for (int i = 0; i < result.dataLength - 1 && isMaxNeg; i++)
                        {
                            if (result.data[i] != 0)
                                isMaxNeg = false;
                        }

                        if (isMaxNeg)
                            return result;
                    }
                }

                throw (new ArithmeticException("Multiplication overflow."));
            }

            // if input has different signs, then result is -ve
            if (bi1Neg != bi2Neg)
                return -result;

            return result;
        }
        //***********************************************************************
        // Overloading of unary << operators
        //***********************************************************************

        public static BigInteger operator <<(BigInteger bi1, int shiftVal)
        {
            BigInteger result = new BigInteger(bi1);
            result.dataLength = shiftLeft(result.data, shiftVal);

            return result;
        }
        //***********************************************************************
        // Returns a value that is equivalent to the integer square root
        // of the BigInteger.
        //
        // The integer square root of "this" is defined as the largest integer n
        // such that (n * n) <= this
        //
        //***********************************************************************

        internal BigInteger sqrt()
        {
            uint numBits = (uint)this.bitCount();

            if ((numBits & 0x1) != 0)        // odd number of bits
                numBits = (numBits >> 1) + 1;
            else
                numBits = (numBits >> 1);

            uint bytePos = numBits >> 5;
            byte bitPos = (byte)(numBits & 0x1F);

            uint mask;

            BigInteger result = new BigInteger();
            if (bitPos == 0)
                mask = 0x80000000;
            else
            {
                mask = (uint)1 << bitPos;
                bytePos++;
            }
            result.dataLength = (int)bytePos;

            for (int i = (int)bytePos - 1; i >= 0; i--)
            {
                while (mask != 0)
                {
                    // guess
                    result.data[i] ^= mask;

                    // undo the guess if its square is larger than this
                    if ((result * result) > this)
                        result.data[i] ^= mask;

                    mask >>= 1;
                }
                mask = 0x80000000;
            }
            return result;
        }
        //***********************************************************************
        // Overloading of the NOT operator (1's complement)
        //***********************************************************************

        public static BigInteger operator ~(BigInteger bi1)
        {
            BigInteger result = new BigInteger(bi1);

            for (int i = 0; i < maxLength; i++)
                result.data[i] = (uint)(~(bi1.data[i]));

            result.dataLength = maxLength;

            while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                result.dataLength--;

            return result;
        }
        //***********************************************************************
        // Returns the k_th number in the Lucas Sequence reduced modulo n.
        //
        // Uses index doubling to speed up the process.  For example, to calculate V(k),
        // we maintain two numbers in the sequence V(n) and V(n+1).
        //
        // To obtain V(2n), we use the identity
        //      V(2n) = (V(n) * V(n)) - (2 * Q^n)
        // To obtain V(2n+1), we first write it as
        //      V(2n+1) = V((n+1) + n)
        // and use the identity
        //      V(m+n) = V(m) * V(n) - Q * V(m-n)
        // Hence,
        //      V((n+1) + n) = V(n+1) * V(n) - Q^n * V((n+1) - n)
        //                   = V(n+1) * V(n) - Q^n * V(1)
        //                   = V(n+1) * V(n) - Q^n * P
        //
        // We use k in its binary expansion and perform index doubling for each
        // bit position.  For each bit position that is set, we perform an
        // index doubling followed by an index addition.  This means that for V(n),
        // we need to update it to V(2n+1).  For V(n+1), we need to update it to
        // V((2n+1)+1) = V(2*(n+1))
        //
        // This function returns
        // [0] = U(k)
        // [1] = V(k)
        // [2] = Q^n
        //
        // Where U(0) = 0 % n, U(1) = 1 % n
        //       V(0) = 2 % n, V(1) = P % n
        //***********************************************************************

        internal static BigInteger[] LucasSequence(BigInteger P, BigInteger Q,
                                                 BigInteger k, BigInteger n)
        {
            if (k.dataLength == 1 && k.data[0] == 0)
            {
                BigInteger[] result = new BigInteger[3];

                result[0] = 0; result[1] = 2 % n; result[2] = 1 % n;
                return result;
            }

            // calculate constant = b^(2k) / m
            // for Barrett Reduction
            BigInteger constant = new BigInteger();

            int nLen = n.dataLength << 1;
            constant.data[nLen] = 0x00000001;
            constant.dataLength = nLen + 1;

            constant = constant / n;

            // calculate values of s and t
            int s = 0;

            for (int index = 0; index < k.dataLength; index++)
            {
                uint mask = 0x01;

                for (int i = 0; i < 32; i++)
                {
                    if ((k.data[index] & mask) != 0)
                    {
                        index = k.dataLength;      // to break the outer loop
                        break;
                    }
                    mask <<= 1;
                    s++;
                }
            }

            BigInteger t = k >> s;

            //Console.WriteLine("s = " + s + " t = " + t);
            return LucasSequenceHelper(P, Q, t, n, constant, s);
        }
        //***********************************************************************
        // Private function that supports the division of two numbers with
        // a divisor that has more than 1 digit.
        //
        // Algorithm taken from [1]
        //***********************************************************************

        private static void multiByteDivide(BigInteger bi1, BigInteger bi2,
                                            BigInteger outQuotient, BigInteger outRemainder)
        {
            uint[] result = new uint[maxLength];

            int remainderLen = bi1.dataLength + 1;
            uint[] remainder = new uint[remainderLen];

            uint mask = 0x80000000;
            uint val = bi2.data[bi2.dataLength - 1];
            int shift = 0, resultPos = 0;

            while (mask != 0 && (val & mask) == 0)
            {
                shift++; mask >>= 1;
            }

            for (int i = 0; i < bi1.dataLength; i++)
                remainder[i] = bi1.data[i];
            shiftLeft(remainder, shift);
            bi2 = bi2 << shift;

            int j = remainderLen - bi2.dataLength;
            int pos = remainderLen - 1;

            ulong firstDivisorByte = bi2.data[bi2.dataLength - 1];
            ulong secondDivisorByte = bi2.data[bi2.dataLength - 2];

            int divisorLen = bi2.dataLength + 1;
            uint[] dividendPart = new uint[divisorLen];

            while (j > 0)
            {
                ulong dividend = ((ulong)remainder[pos] << 32) + (ulong)remainder[pos - 1];

                ulong q_hat = dividend / firstDivisorByte;
                ulong r_hat = dividend % firstDivisorByte;

                bool done = false;
                while (!done)
                {
                    done = true;

                    if (q_hat == 0x100000000 ||
                       (q_hat * secondDivisorByte) > ((r_hat << 32) + remainder[pos - 2]))
                    {
                        q_hat--;
                        r_hat += firstDivisorByte;

                        if (r_hat < 0x100000000)
                            done = false;
                    }
                }

                for (int h = 0; h < divisorLen; h++)
                    dividendPart[h] = remainder[pos - h];

                BigInteger kk = new BigInteger(dividendPart);
                BigInteger ss = bi2 * (long)q_hat;

                while (ss > kk)
                {
                    q_hat--;
                    ss -= bi2;
                }
                BigInteger yy = kk - ss;

                for (int h = 0; h < divisorLen; h++)
                    remainder[pos - h] = yy.data[bi2.dataLength - h];

                result[resultPos++] = (uint)q_hat;

                pos--;
                j--;
            }

            outQuotient.dataLength = resultPos;
            int y = 0;
            for (int x = outQuotient.dataLength - 1; x >= 0; x--, y++)
                outQuotient.data[y] = result[x];
            for (; y < maxLength; y++)
                outQuotient.data[y] = 0;

            while (outQuotient.dataLength > 1 && outQuotient.data[outQuotient.dataLength - 1] == 0)
                outQuotient.dataLength--;

            if (outQuotient.dataLength == 0)
                outQuotient.dataLength = 1;

            outRemainder.dataLength = shiftRight(remainder, shift);

            for (y = 0; y < outRemainder.dataLength; y++)
                outRemainder.data[y] = remainder[y];
            for (; y < maxLength; y++)
                outRemainder.data[y] = 0;

        }
        //***********************************************************************
        // Performs the calculation of the kth term in the Lucas Sequence.
        // For details of the algorithm, see reference [9].
        //
        // k must be odd.  i.e LSB == 1
        //***********************************************************************

        private static BigInteger[] LucasSequenceHelper(BigInteger P, BigInteger Q,
                                                        BigInteger k, BigInteger n,
                                                        BigInteger constant, int s)
        {
            BigInteger[] result = new BigInteger[3];

            if ((k.data[0] & 0x00000001) == 0)
                throw (new ArgumentException("Argument k must be odd."));

            int numbits = k.bitCount();
            uint mask = (uint)0x1 << ((numbits & 0x1F) - 1);

            // v = v0, v1 = v1, u1 = u1, Q_k = Q^0

            BigInteger v = 2 % n, Q_k = 1 % n,
                       v1 = P % n, u1 = Q_k;
            bool flag = true;

            for (int i = k.dataLength - 1; i >= 0; i--)     // iterate on the binary expansion of k
            {
                //Console.WriteLine("round");
                while (mask != 0)
                {
                    if (i == 0 && mask == 0x00000001)        // last bit
                        break;

                    if ((k.data[i] & mask) != 0)             // bit is set
                    {
                        // index doubling with addition

                        u1 = (u1 * v1) % n;

                        v = ((v * v1) - (P * Q_k)) % n;
                        v1 = n.BarrettReduction(v1 * v1, n, constant);
                        v1 = (v1 - ((Q_k * Q) << 1)) % n;

                        if (flag)
                            flag = false;
                        else
                            Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);

                        Q_k = (Q_k * Q) % n;
                    }
                    else
                    {
                        // index doubling
                        u1 = ((u1 * v) - Q_k) % n;

                        v1 = ((v * v1) - (P * Q_k)) % n;
                        v = n.BarrettReduction(v * v, n, constant);
                        v = (v - (Q_k << 1)) % n;

                        if (flag)
                        {
                            Q_k = Q % n;
                            flag = false;
                        }
                        else
                            Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
                    }

                    mask >>= 1;
                }
                mask = 0x80000000;
            }

            // at this point u1 = u(n+1) and v = v(n)
            // since the last bit always 1, we need to transform u1 to u(2n+1) and v to v(2n+1)

            u1 = ((u1 * v) - Q_k) % n;
            v = ((v * v1) - (P * Q_k)) % n;
            if (flag)
                flag = false;
            else
                Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);

            Q_k = (Q_k * Q) % n;


            for (int i = 0; i < s; i++)
            {
                // index doubling
                u1 = (u1 * v) % n;
                v = ((v * v) - (Q_k << 1)) % n;

                if (flag)
                {
                    Q_k = Q % n;
                    flag = false;
                }
                else
                    Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
            }

            result[0] = u1;
            result[1] = v;
            result[2] = Q_k;

            return result;
        }
        /// <summary>
        /// Generate the RSA Key Pair using a supplied cipher strength value and exponent value.  
        /// A prime number value between 3 and 65537 is recommended for the exponent.  Larger 
        /// exponents can increase security but also increase encryption time.  Your supplied 
        /// exponent may be automatically adjusted to ensure compatibility with the RSA algorithm 
        /// security requirements.  If a cipherStrength was specified in the constructor, 
        /// the supplied <paramref name="cipherStrength"/> value will override it.
        /// </summary>
        /// <param name="cipherStrength">The strength of the cipher in bits.  Must be a multiple of 8 
        /// and between 256 and 4096</param>
        /// <param name="exponent">Custom exponent value to be used for RSA Calculation</param>
        public void GenerateKeys(int cipherStrength, int exponent)
        {
            if ((cipherStrength > 4096) || (cipherStrength < 256) || (cipherStrength % 8 != 0))
                throw new ArgumentException("cipherStrength must be a value between 256 and 4096 and must be a multiple of 8.");

            if (m_isBusy == true)
                throw new CryptographicException("Operation cannot be performed while a current key generation operation is in progress.");

            m_KeyLoaded = false;
            m_isBusy = true;

            //bitLength is used to calculate P and Q, so it needs
            //to be half of the cipherStrength.  bitLength 512 = 1024-bit encryption.
            m_bitLength = cipherStrength / 2;

            //Make sure this is a positive number
            BigInteger iExp = new BigInteger(Math.Abs((long)exponent));

            //Make sure this is an odd number
            if (iExp % 2 == 0)
            {
                iExp += 1;
            }

            m_RSAParams.E = iExp.getBytesRaw();

            m_primeProgress = 0;
            m_worker1 = new BackgroundWorker();
            m_worker2 = new BackgroundWorker();
            m_worker1.RunWorkerCompleted += OnPrimeGenerated;
            m_worker2.RunWorkerCompleted += OnPrimeGenerated;

            Generate_Primes();
        }
        //***********************************************************************
        // Overloading of addition operator
        //***********************************************************************
        public static BigInteger operator +(BigInteger bi1, BigInteger bi2)
        {
            BigInteger result = new BigInteger();

            result.dataLength = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;

            long carry = 0;
            for (int i = 0; i < result.dataLength; i++)
            {
                long sum = (long)bi1.data[i] + (long)bi2.data[i] + carry;
                carry = sum >> 32;
                result.data[i] = (uint)(sum & 0xFFFFFFFF);
            }

            if (carry != 0 && result.dataLength < maxLength)
            {
                result.data[result.dataLength] = (uint)(carry);
                result.dataLength++;
            }

            while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                result.dataLength--;


            // overflow check
            int lastPos = maxLength - 1;
            if ((bi1.data[lastPos] & 0x80000000) == (bi2.data[lastPos] & 0x80000000) &&
               (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))
            {
                throw (new ArithmeticException());
            }

            return result;
        }
        private void BuildKeys()
        {
            //Make a call to Generate_Primes.
            BigInteger P = new BigInteger(m_RSAParams.P);
            BigInteger Q = new BigInteger(m_RSAParams.Q);

            //Exponent.  This needs to be a number such that the 
            //GCD of the Exponent and Phi is 1.  The larger the exp. 
            //the more secure, but it increases encryption time.
            BigInteger E = new BigInteger(m_RSAParams.E);

            BigInteger N = new BigInteger(0);
            //Public and Private Key Part (Modulus)
            BigInteger D = new BigInteger(0);
            //Private Key Part
            BigInteger DP = new BigInteger(0);
            BigInteger DQ = new BigInteger(0);
            BigInteger IQ = new BigInteger(0);
            BigInteger Phi = new BigInteger(0);
            //Phi

            //Make sure P is greater than Q, swap if less.
            if (P < Q)
            {
                BigInteger biTmp = P;
                P = Q;
                Q = biTmp;
                biTmp = null;

                m_RSAParams.P = P.getBytesRaw();
                m_RSAParams.Q = Q.getBytesRaw();
            }

            //Calculate the modulus
            N = P * Q;
            m_RSAParams.N = N.getBytesRaw();

            //Calculate Phi
            Phi = (P - 1) * (Q - 1);
            m_RSAParams.Phi = Phi.getBytesRaw();


            //Make sure our Exponent will work, or choose a larger one.
            while (Phi.gcd(E) > 1)
            {
                //If the GCD is greater than 1 iterate the Exponent
                E = E + 2;
                //Also make sure the Exponent is prime.
                while (!E.isProbablePrime())
                {
                    E = E + 2;
                }
            }

            //Make sure the params contain the updated E value
            m_RSAParams.E = E.getBytesRaw();


            //Calculate the private exponent D.
            D = E.modInverse(Phi);
            m_RSAParams.D = D.getBytesRaw();

            //Calculate DP
            DP = E.modInverse(P - 1);
            m_RSAParams.DP = DP.getBytesRaw();

            //Calculate DQ
            DQ = E.modInverse(Q - 1);
            m_RSAParams.DQ = DQ.getBytesRaw();

            //Calculate InverseQ
            IQ = Q.modInverse(P);
            m_RSAParams.IQ = IQ.getBytesRaw();

            m_KeyLoaded = true;
            m_isBusy = false;

            OnKeysGenerated(this);

        }
        //***********************************************************************
        // Overloading of the unary ++ operator
        //***********************************************************************
        public static BigInteger operator ++(BigInteger bi1)
        {
            BigInteger result = new BigInteger(bi1);

            long val, carry = 1;
            int index = 0;

            while (carry != 0 && index < maxLength)
            {
                val = (long)(result.data[index]);
                val++;

                result.data[index] = (uint)(val & 0xFFFFFFFF);
                carry = val >> 32;

                index++;
            }

            if (index > result.dataLength)
                result.dataLength = index;
            else
            {
                while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                    result.dataLength--;
            }

            // overflow check
            int lastPos = maxLength - 1;

            // overflow if initial value was +ve but ++ caused a sign
            // change to negative.

            if ((bi1.data[lastPos] & 0x80000000) == 0 &&
               (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))
            {
                throw (new ArithmeticException("Overflow in ++."));
            }
            return result;
        }
        private byte[] encryptData(byte[] dataBytes, byte[] bytExponent, byte[] bytModulus)
        {
            //Make sure the data to be encrypted is not bigger than the modulus
            if (dataBytes.Length > bytModulus.Length)
            {
                throw new CryptographicException("Data length cannot be larger than the modulus.  Specify a larger cipher strength " +
                                            "in the constructor and generate a new key pair, or consider encrypting a smaller " +
                                            "amount of data.");
            }

            BigInteger oRawData = new BigInteger(dataBytes, dataBytes.Length);
            BigInteger result = oRawData.modPow(new BigInteger(bytExponent), new BigInteger(bytModulus));

            return result.getBytesRaw();
        }
        //***********************************************************************
        // Overloading of subtraction operator
        //***********************************************************************
        public static BigInteger operator -(BigInteger bi1, BigInteger bi2)
        {
            BigInteger result = new BigInteger();

            result.dataLength = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;

            long carryIn = 0;
            for (int i = 0; i < result.dataLength; i++)
            {
                long diff;

                diff = (long)bi1.data[i] - (long)bi2.data[i] - carryIn;
                result.data[i] = (uint)(diff & 0xFFFFFFFF);

                if (diff < 0)
                    carryIn = 1;
                else
                    carryIn = 0;
            }

            // roll over to negative
            if (carryIn != 0)
            {
                for (int i = result.dataLength; i < maxLength; i++)
                    result.data[i] = 0xFFFFFFFF;
                result.dataLength = maxLength;
            }

            // fixed in v1.03 to give correct datalength for a - (-b)
            while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                result.dataLength--;

            // overflow check

            int lastPos = maxLength - 1;
            if ((bi1.data[lastPos] & 0x80000000) != (bi2.data[lastPos] & 0x80000000) &&
               (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))
            {
                throw (new ArithmeticException());
            }

            return result;
        }
        private bool Validate_Key_Data(RSAParameters @params)
        {
            bool result = true;

            //Make sure the public bits have been set
            if (!(@params.N.Length > 0))
            {
                throw new CryptographicException("Value for Modulus (N) is missing or invalid.");
            }

            if (!(@params.E.Length > 0))
            {
                throw new CryptographicException("Value for Public Exponent (E) is missing or invalid.");
            }

            //If any of the private key data (D, P or Q) were supplied, validating private
            //key info.
            if (@params.D.Length > 0 || @params.P.Length > 0 || @params.Q.Length > 0)
            {
                if (!(@params.P.Length > 0))
                {
                    throw new CryptographicException("Value for P is missing or invalid.");
                }

                if (!(@params.Q.Length > 0))
                {
                    throw new CryptographicException("Value for Q is missing or invalid.");
                }

                if (!(@params.D.Length > 0))
                {
                    throw new CryptographicException("Value for Private Exponent (D) is missing or invalid.");
                }

                //Validate the key
                if (@params.P.Length != @params.N.Length / 2 || @params.Q.Length != @params.N.Length / 2)
                {
                    throw new CryptographicException("Invalid Key.");

                }

                BigInteger biN = new BigInteger(@params.N);
                BigInteger biP = new BigInteger(@params.P);
                BigInteger biQ = new BigInteger(@params.Q);

                BigInteger tmpMod = new BigInteger(biP * biQ);

                if (!(tmpMod == biN))
                {
                    throw new CryptographicException("Invalid Key.");
                }

                tmpMod = null;

            }

            return result;
        }
        //***********************************************************************
        // Overloading of the unary -- operator
        //***********************************************************************
        public static BigInteger operator --(BigInteger bi1)
        {
            BigInteger result = new BigInteger(bi1);

            long val;
            bool carryIn = true;
            int index = 0;

            while (carryIn && index < maxLength)
            {
                val = (long)(result.data[index]);
                val--;

                result.data[index] = (uint)(val & 0xFFFFFFFF);

                if (val >= 0)
                    carryIn = false;

                index++;
            }

            if (index > result.dataLength)
                result.dataLength = index;

            while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                result.dataLength--;

            // overflow check
            int lastPos = maxLength - 1;

            // overflow if initial value was -ve but -- caused a sign
            // change to positive.

            if ((bi1.data[lastPos] & 0x80000000) != 0 &&
               (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))
            {
                throw (new ArithmeticException("Underflow in --."));
            }

            return result;
        }