Exemple #1
0
        static void Swap(ref MeshUtils.Vertex a, ref MeshUtils.Vertex b)
        {
            var tmp = a;

            a = b;
            b = tmp;
        }
Exemple #2
0
        public void Check()
        {
            MeshUtils.Edge e;

            MeshUtils.Face fPrev = _fHead, f;
            for (fPrev = _fHead; (f = fPrev._next) != _fHead; fPrev = f)
            {
                e = f._anEdge;
                do
                {
                    Debug.Assert(e._Sym != e);
                    Debug.Assert(e._Sym._Sym == e);
                    Debug.Assert(e._Lnext._Onext._Sym == e);
                    Debug.Assert(e._Onext._Sym._Lnext == e);
                    Debug.Assert(e._Lface == f);
                    e = e._Lnext;
                } while (e != f._anEdge);
            }
            Debug.Assert(f._prev == fPrev && f._anEdge == null);

            MeshUtils.Vertex vPrev = _vHead, v;
            for (vPrev = _vHead; (v = vPrev._next) != _vHead; vPrev = v)
            {
                Debug.Assert(v._prev == vPrev);
                e = v._anEdge;
                do
                {
                    Debug.Assert(e._Sym != e);
                    Debug.Assert(e._Sym._Sym == e);
                    Debug.Assert(e._Lnext._Onext._Sym == e);
                    Debug.Assert(e._Onext._Sym._Lnext == e);
                    Debug.Assert(e._Org == v);
                    e = e._Onext;
                } while (e != v._anEdge);
            }
            Debug.Assert(v._prev == vPrev && v._anEdge == null);

            MeshUtils.Edge ePrev = _eHead;
            for (ePrev = _eHead; (e = ePrev._next) != _eHead; ePrev = e)
            {
                Debug.Assert(e._Sym._next == ePrev._Sym);
                Debug.Assert(e._Sym != e);
                Debug.Assert(e._Sym._Sym == e);
                Debug.Assert(e._Org != null);
                Debug.Assert(e._Dst != null);
                Debug.Assert(e._Lnext._Onext._Sym == e);
                Debug.Assert(e._Onext._Sym._Lnext == e);
            }
            Debug.Assert(e._Sym._next == ePrev._Sym &&
                         e._Sym == _eHeadSym &&
                         e._Sym._Sym == e &&
                         e._Org == null && e._Dst == null &&
                         e._Lface == null && e._Rface == null);
        }
Exemple #3
0
        public static float TransSign(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w)
        {
            Debug.Assert(TransLeq(u, v) && TransLeq(v, w));

            float gapL = v._t - u._t;
            float gapR = w._t - v._t;

            if (gapL + gapR > 0.0f)
            {
                return((v._s - w._s) * gapL + (v._s - u._s) * gapR);
            }
            /* vertical line */
            return(0.0f);
        }
Exemple #4
0
        /// <summary>
        /// Returns a number whose sign matches EdgeEval(u,v,w) but which
        /// is cheaper to evaluate. Returns > 0, == 0 , or < 0
        /// as v is above, on, or below the edge uw.
        /// </summary>
        public static float EdgeSign(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w)
        {
            Debug.Assert(VertLeq(u, v) && VertLeq(v, w));

            float gapL = v._s - u._s;
            float gapR = w._s - v._s;

            if (gapL + gapR > 0.0f)
            {
                return((v._t - w._t) * gapL + (v._t - u._t) * gapR);
            }
            /* vertical line */
            return(0.0f);
        }
Exemple #5
0
        /// <summary>
        /// Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w),
        /// evaluates the t-coord of the edge uw at the s-coord of the vertex v.
        /// Returns v->t - (uw)(v->s), ie. the signed distance from uw to v.
        /// If uw is vertical (and thus passes thru v), the result is zero.
        ///
        /// The calculation is extremely accurate and stable, even when v
        /// is very close to u or w.  In particular if we set v->t = 0 and
        /// let r be the negated result (this evaluates (uw)(v->s)), then
        /// r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t).
        /// </summary>
        public static float EdgeEval(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w)
        {
            Debug.Assert(VertLeq(u, v) && VertLeq(v, w));

            float gapL = v._s - u._s;
            float gapR = w._s - v._s;

            if (gapL + gapR > 0.0f)
            {
                if (gapL < gapR)
                {
                    return((v._t - u._t) + (u._t - w._t) * (gapL / (gapL + gapR)));
                }
                else
                {
                    return((v._t - w._t) + (w._t - u._t) * (gapR / (gapL + gapR)));
                }
            }
            /* vertical line */
            return(0.0f);
        }
Exemple #6
0
        public Mesh()
        {
            var v = _vHead = new MeshUtils.Vertex();
            var f = _fHead = new MeshUtils.Face();

            var pair = MeshUtils.EdgePair.Create();
            var e    = _eHead = pair._e;
            var eSym = _eHeadSym = pair._eSym;

            v._next   = v._prev = v;
            v._anEdge = null;

            f._next   = f._prev = f;
            f._anEdge = null;
            f._trail  = null;
            f._marked = false;
            f._inside = false;

            e._next         = e;
            e._Sym          = eSym;
            e._Onext        = null;
            e._Lnext        = null;
            e._Org          = null;
            e._Lface        = null;
            e._winding      = 0;
            e._activeRegion = null;

            eSym._next         = eSym;
            eSym._Sym          = e;
            eSym._Onext        = null;
            eSym._Lnext        = null;
            eSym._Org          = null;
            eSym._Lface        = null;
            eSym._winding      = 0;
            eSym._activeRegion = null;
        }
Exemple #7
0
        public Mesh()
        {
            var v = _vHead = new MeshUtils.Vertex();
            var f = _fHead = new MeshUtils.Face();

            var pair = MeshUtils.EdgePair.Create();
            var e = _eHead = pair._e;
            var eSym = _eHeadSym = pair._eSym;

            v._next = v._prev = v;
            v._anEdge = null;

            f._next = f._prev = f;
            f._anEdge = null;
            f._trail = null;
            f._marked = false;
            f._inside = false;

            e._next = e;
            e._Sym = eSym;
            e._Onext = null;
            e._Lnext = null;
            e._Org = null;
            e._Lface = null;
            e._winding = 0;
            e._activeRegion = null;

            eSym._next = eSym;
            eSym._Sym = e;
            eSym._Onext = null;
            eSym._Lnext = null;
            eSym._Org = null;
            eSym._Lface = null;
            eSym._winding = 0;
            eSym._activeRegion = null;
        }
Exemple #8
0
        /// <summary>
        /// Check the upper and lower edges of the given region to see if
        /// they intersect.  If so, create the intersection and add it
        /// to the data structures.
        /// 
        /// Returns TRUE if adding the new intersection resulted in a recursive
        /// call to AddRightEdges(); in this case all "dirty" regions have been
        /// checked for intersections, and possibly regUp has been deleted.
        /// </summary>
        private bool CheckForIntersect(ActiveRegion regUp)
        {
            var regLo = RegionBelow(regUp);
            var eUp = regUp._eUp;
            var eLo = regLo._eUp;
            var orgUp = eUp._Org;
            var orgLo = eLo._Org;
            var dstUp = eUp._Dst;
            var dstLo = eLo._Dst;

            Debug.Assert(!Geom.VertEq(dstLo, dstUp));
            Debug.Assert(Geom.EdgeSign(dstUp, _event, orgUp) <= 0.0f);
            Debug.Assert(Geom.EdgeSign(dstLo, _event, orgLo) >= 0.0f);
            Debug.Assert(orgUp != _event && orgLo != _event);
            Debug.Assert(!regUp._fixUpperEdge && !regLo._fixUpperEdge);

            if (orgUp == orgLo)
            {
                // right endpoints are the same
                return false;
            }

            var tMinUp = Math.Min(orgUp._t, dstUp._t);
            var tMaxLo = Math.Max(orgLo._t, dstLo._t);
            if (tMinUp > tMaxLo)
            {
                // t ranges do not overlap
                return false;
            }

            if (Geom.VertLeq(orgUp, orgLo))
            {
                if (Geom.EdgeSign(dstLo, orgUp, orgLo) > 0.0f)
                {
                    return false;
                }
            } else
            {
                if (Geom.EdgeSign(dstUp, orgLo, orgUp) < 0.0f)
                {
                    return false;
                }
            }

            // At this point the edges intersect, at least marginally

            var isect = new MeshUtils.Vertex();
            Geom.EdgeIntersect(dstUp, orgUp, dstLo, orgLo, isect);
            // The following properties are guaranteed:
            Debug.Assert(Math.Min(orgUp._t, dstUp._t) <= isect._t);
            Debug.Assert(isect._t <= Math.Max(orgLo._t, dstLo._t));
            Debug.Assert(Math.Min(dstLo._s, dstUp._s) <= isect._s);
            Debug.Assert(isect._s <= Math.Max(orgLo._s, orgUp._s));

            if (Geom.VertLeq(isect, _event))
            {
                // The intersection point lies slightly to the left of the sweep line,
                // so move it until it''s slightly to the right of the sweep line.
                // (If we had perfect numerical precision, this would never happen
                // in the first place). The easiest and safest thing to do is
                // replace the intersection by tess._event.
                isect._s = _event._s;
                isect._t = _event._t;
            }
            // Similarly, if the computed intersection lies to the right of the
            // rightmost origin (which should rarely happen), it can cause
            // unbelievable inefficiency on sufficiently degenerate inputs.
            // (If you have the test program, try running test54.d with the
            // "X zoom" option turned on).
            var orgMin = Geom.VertLeq(orgUp, orgLo) ? orgUp : orgLo;
            if (Geom.VertLeq(orgMin, isect))
            {
                isect._s = orgMin._s;
                isect._t = orgMin._t;
            }

            if (Geom.VertEq(isect, orgUp) || Geom.VertEq(isect, orgLo))
            {
                // Easy case -- intersection at one of the right endpoints
                CheckForRightSplice(regUp);
                return false;
            }

            if ((! Geom.VertEq(dstUp, _event)
                && Geom.EdgeSign(dstUp, _event, isect) >= 0.0f)
                || (! Geom.VertEq(dstLo, _event)
                && Geom.EdgeSign(dstLo, _event, isect) <= 0.0f))
            {
                // Very unusual -- the new upper or lower edge would pass on the
                // wrong side of the sweep event, or through it. This can happen
                // due to very small numerical errors in the intersection calculation.
                if (dstLo == _event)
                {
                    // Splice dstLo into eUp, and process the new region(s)
                    _mesh.SplitEdge(eUp._Sym);
                    _mesh.Splice(eLo._Sym, eUp);
                    regUp = TopLeftRegion(regUp);
                    eUp = RegionBelow(regUp)._eUp;
                    FinishLeftRegions(RegionBelow(regUp), regLo);
                    AddRightEdges(regUp, eUp._Oprev, eUp, eUp, true);
                    return true;
                }
                if (dstUp == _event)
                {
                    /* Splice dstUp into eLo, and process the new region(s) */
                    _mesh.SplitEdge(eLo._Sym);
                    _mesh.Splice(eUp._Lnext, eLo._Oprev);
                    regLo = regUp;
                    regUp = TopRightRegion(regUp);
                    var e = RegionBelow(regUp)._eUp._Rprev;
                    regLo._eUp = eLo._Oprev;
                    eLo = FinishLeftRegions(regLo, null);
                    AddRightEdges(regUp, eLo._Onext, eUp._Rprev, e, true);
                    return true;
                }
                // Special case: called from ConnectRightVertex. If either
                // edge passes on the wrong side of tess._event, split it
                // (and wait for ConnectRightVertex to splice it appropriately).
                if (Geom.EdgeSign(dstUp, _event, isect) >= 0.0f)
                {
                    RegionAbove(regUp)._dirty = regUp._dirty = true;
                    _mesh.SplitEdge(eUp._Sym);
                    eUp._Org._s = _event._s;
                    eUp._Org._t = _event._t;
                }
                if (Geom.EdgeSign(dstLo, _event, isect) <= 0.0f)
                {
                    regUp._dirty = regLo._dirty = true;
                    _mesh.SplitEdge(eLo._Sym);
                    eLo._Org._s = _event._s;
                    eLo._Org._t = _event._t;
                }
                // leave the rest for ConnectRightVertex
                return false;
            }

            // General case -- split both edges, splice into new vertex.
            // When we do the splice operation, the order of the arguments is
            // arbitrary as far as correctness goes. However, when the operation
            // creates a new face, the work done is proportional to the size of
            // the new face.  We expect the faces in the processed part of
            // the mesh (ie. eUp._Lface) to be smaller than the faces in the
            // unprocessed original contours (which will be eLo._Oprev._Lface).
            _mesh.SplitEdge(eUp._Sym);
            _mesh.SplitEdge(eLo._Sym);
            _mesh.Splice(eLo._Oprev, eUp);
            eUp._Org._s = isect._s;
            eUp._Org._t = isect._t;
            eUp._Org._pqHandle = _pq.Insert(eUp._Org);
            if (eUp._Org._pqHandle._handle == PQHandle.Invalid)
            {
                throw new InvalidOperationException("PQHandle should not be invalid");
            }
            GetIntersectData(eUp._Org, orgUp, dstUp, orgLo, dstLo);
            RegionAbove(regUp)._dirty = regUp._dirty = regLo._dirty = true;
            return false;
        }
Exemple #9
0
 public static bool VertLeq(MeshUtils.Vertex lhs, MeshUtils.Vertex rhs)
 {
     return((lhs._s < rhs._s) || (lhs._s == rhs._s && lhs._t <= rhs._t));
 }
Exemple #10
0
 public static bool VertEq(MeshUtils.Vertex lhs, MeshUtils.Vertex rhs)
 {
     return(lhs._s == rhs._s && lhs._t == rhs._t);
 }
Exemple #11
0
 public static bool VertCCW(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w)
 {
     return((u._s * (v._t - w._t) + v._s * (w._t - u._t) + w._s * (u._t - v._t)) >= 0.0f);
 }
Exemple #12
0
        /// <summary>
        /// Given edges (o1,d1) and (o2,d2), compute their point of intersection.
        /// The computed point is guaranteed to lie in the intersection of the
        /// bounding rectangles defined by each edge.
        /// </summary>
        public static void EdgeIntersect(MeshUtils.Vertex o1, MeshUtils.Vertex d1, MeshUtils.Vertex o2, MeshUtils.Vertex d2, MeshUtils.Vertex v)
        {
            float z1, z2;

            // This is certainly not the most efficient way to find the intersection
            // of two line segments, but it is very numerically stable.
            //
            // Strategy: find the two middle vertices in the VertLeq ordering,
            // and interpolate the intersection s-value from these.  Then repeat
            // using the TransLeq ordering to find the intersection t-value.

            if (!VertLeq(o1, d1))
            {
                Swap(ref o1, ref d1);
            }
            if (!VertLeq(o2, d2))
            {
                Swap(ref o2, ref d2);
            }
            if (!VertLeq(o1, o2))
            {
                Swap(ref o1, ref o2);
                Swap(ref d1, ref d2);
            }

            if (!VertLeq(o2, d1))
            {
                // Technically, no intersection -- do our best
                v._s = (o2._s + d1._s) / 2.0f;
            }
            else if (VertLeq(d1, d2))
            {
                // Interpolate between o2 and d1
                z1 = EdgeEval(o1, o2, d1);
                z2 = EdgeEval(o2, d1, d2);
                if (z1 + z2 < 0.0f)
                {
                    z1 = -z1;
                    z2 = -z2;
                }
                v._s = Interpolate(z1, o2._s, z2, d1._s);
            }
            else
            {
                // Interpolate between o2 and d2
                z1 = EdgeSign(o1, o2, d1);
                z2 = -EdgeSign(o1, d2, d1);
                if (z1 + z2 < 0.0f)
                {
                    z1 = -z1;
                    z2 = -z2;
                }
                v._s = Interpolate(z1, o2._s, z2, d2._s);
            }

            // Now repeat the process for t

            if (!TransLeq(o1, d1))
            {
                Swap(ref o1, ref d1);
            }
            if (!TransLeq(o2, d2))
            {
                Swap(ref o2, ref d2);
            }
            if (!TransLeq(o1, o2))
            {
                Swap(ref o1, ref o2);
                Swap(ref d1, ref d2);
            }

            if (!TransLeq(o2, d1))
            {
                // Technically, no intersection -- do our best
                v._t = (o2._t + d1._t) / 2.0f;
            }
            else if (TransLeq(d1, d2))
            {
                // Interpolate between o2 and d1
                z1 = TransEval(o1, o2, d1);
                z2 = TransEval(o2, d1, d2);
                if (z1 + z2 < 0.0f)
                {
                    z1 = -z1;
                    z2 = -z2;
                }
                v._t = Interpolate(z1, o2._t, z2, d1._t);
            }
            else
            {
                // Interpolate between o2 and d2
                z1 = TransSign(o1, o2, d1);
                z2 = -TransSign(o1, d2, d1);
                if (z1 + z2 < 0.0f)
                {
                    z1 = -z1;
                    z2 = -z2;
                }
                v._t = Interpolate(z1, o2._t, z2, d2._t);
            }
        }
Exemple #13
0
 public static float VertL1dist(MeshUtils.Vertex u, MeshUtils.Vertex v)
 {
     return(Math.Abs(u._s - v._s) + Math.Abs(u._t - v._t));
 }
Exemple #14
0
 public static bool TransLeq(MeshUtils.Vertex lhs, MeshUtils.Vertex rhs)
 {
     return((lhs._t < rhs._t) || (lhs._t == rhs._t && lhs._s <= rhs._s));
 }
Exemple #15
0
        private void ComputeNormal(ref Vec3 norm)
        {
            var v = _mesh._vHead._next;

            var minVal = new float[3] {
                v._coords.X, v._coords.Y, v._coords.Z
            };
            var minVert = new MeshUtils.Vertex[3] {
                v, v, v
            };
            var maxVal = new float[3] {
                v._coords.X, v._coords.Y, v._coords.Z
            };
            var maxVert = new MeshUtils.Vertex[3] {
                v, v, v
            };

            for (; v != _mesh._vHead; v = v._next)
            {
                if (v._coords.X < minVal [0])
                {
                    minVal [0]  = v._coords.X;
                    minVert [0] = v;
                }
                if (v._coords.Y < minVal [1])
                {
                    minVal [1]  = v._coords.Y;
                    minVert [1] = v;
                }
                if (v._coords.Z < minVal [2])
                {
                    minVal [2]  = v._coords.Z;
                    minVert [2] = v;
                }
                if (v._coords.X > maxVal [0])
                {
                    maxVal [0]  = v._coords.X;
                    maxVert [0] = v;
                }
                if (v._coords.Y > maxVal [1])
                {
                    maxVal [1]  = v._coords.Y;
                    maxVert [1] = v;
                }
                if (v._coords.Z > maxVal [2])
                {
                    maxVal [2]  = v._coords.Z;
                    maxVert [2] = v;
                }
            }

            // Find two vertices separated by at least 1/sqrt(3) of the maximum
            // distance between any two vertices
            int i = 0;

            if (maxVal [1] - minVal [1] > maxVal [0] - minVal [0])
            {
                i = 1;
            }
            if (maxVal [2] - minVal [2] > maxVal [i] - minVal [i])
            {
                i = 2;
            }
            if (minVal [i] >= maxVal [i])
            {
                // All vertices are the same -- normal doesn't matter
                norm = new Vec3 {
                    X = 0.0f, Y = 0.0f, Z = 1.0f
                };
                return;
            }

            // Look for a third vertex which forms the triangle with maximum area
            // (Length of normal == twice the triangle area)
            float maxLen2 = 0.0f, tLen2;
            var   v1 = minVert [i];
            var   v2 = maxVert [i];
            Vec3  d1, d2, tNorm;

            Vec3.Sub(ref v1._coords, ref v2._coords, out d1);
            for (v = _mesh._vHead._next; v != _mesh._vHead; v = v._next)
            {
                Vec3.Sub(ref v._coords, ref v2._coords, out d2);
                tNorm.X = d1.Y * d2.Z - d1.Z * d2.Y;
                tNorm.Y = d1.Z * d2.X - d1.X * d2.Z;
                tNorm.Z = d1.X * d2.Y - d1.Y * d2.X;
                tLen2   = tNorm.X * tNorm.X + tNorm.Y * tNorm.Y + tNorm.Z * tNorm.Z;
                if (tLen2 > maxLen2)
                {
                    maxLen2 = tLen2;
                    norm    = tNorm;
                }
            }

            if (maxLen2 <= 0.0f)
            {
                // All points lie on a single line -- any decent normal will do
                norm     = Vec3.Zero;
                i        = Vec3.LongAxis(ref d1);
                norm [i] = 1.0f;
            }
        }
Exemple #16
0
        private void ComputeNormal(ref Vec3 norm)
        {
            var v = _mesh._vHead._next;

            var minVal = new float[3] { v._coords.X, v._coords.Y, v._coords.Z };
            var minVert = new MeshUtils.Vertex[3] { v, v, v };
            var maxVal = new float[3] { v._coords.X, v._coords.Y, v._coords.Z };
            var maxVert = new MeshUtils.Vertex[3] { v, v, v };

            for (; v != _mesh._vHead; v = v._next)
            {
                if (v._coords.X < minVal [0])
                {
                    minVal [0] = v._coords.X;
                    minVert [0] = v;
                }
                if (v._coords.Y < minVal [1])
                {
                    minVal [1] = v._coords.Y;
                    minVert [1] = v;
                }
                if (v._coords.Z < minVal [2])
                {
                    minVal [2] = v._coords.Z;
                    minVert [2] = v;
                }
                if (v._coords.X > maxVal [0])
                {
                    maxVal [0] = v._coords.X;
                    maxVert [0] = v;
                }
                if (v._coords.Y > maxVal [1])
                {
                    maxVal [1] = v._coords.Y;
                    maxVert [1] = v;
                }
                if (v._coords.Z > maxVal [2])
                {
                    maxVal [2] = v._coords.Z;
                    maxVert [2] = v;
                }
            }

            // Find two vertices separated by at least 1/sqrt(3) of the maximum
            // distance between any two vertices
            int i = 0;
            if (maxVal [1] - minVal [1] > maxVal [0] - minVal [0])
            {
                i = 1;
            }
            if (maxVal [2] - minVal [2] > maxVal [i] - minVal [i])
            {
                i = 2;
            }
            if (minVal [i] >= maxVal [i])
            {
                // All vertices are the same -- normal doesn't matter
                norm = new Vec3 { X = 0.0f, Y = 0.0f, Z = 1.0f };
                return;
            }

            // Look for a third vertex which forms the triangle with maximum area
            // (Length of normal == twice the triangle area)
            float maxLen2 = 0.0f, tLen2;
            var v1 = minVert [i];
            var v2 = maxVert [i];
            Vec3 d1, d2, tNorm;
            Vec3.Sub(ref v1._coords, ref v2._coords, out d1);
            for (v = _mesh._vHead._next; v != _mesh._vHead; v = v._next)
            {
                Vec3.Sub(ref v._coords, ref v2._coords, out d2);
                tNorm.X = d1.Y * d2.Z - d1.Z * d2.Y;
                tNorm.Y = d1.Z * d2.X - d1.X * d2.Z;
                tNorm.Z = d1.X * d2.Y - d1.Y * d2.X;
                tLen2 = tNorm.X * tNorm.X + tNorm.Y * tNorm.Y + tNorm.Z * tNorm.Z;
                if (tLen2 > maxLen2)
                {
                    maxLen2 = tLen2;
                    norm = tNorm;
                }
            }

            if (maxLen2 <= 0.0f)
            {
                // All points lie on a single line -- any decent normal will do
                norm = Vec3.Zero;
                i = Vec3.LongAxis(ref d1);
                norm [i] = 1.0f;
            }
        }