static void Main(string[] args) { sn.Net snet = new sn.Net(); string ver = snet.versionLib(); Console.WriteLine("Version snlib " + ver); snet.addNode("In", new sn.Input(), "C1") .addNode("C1", new sn.Convolution(10, -1), "C2") .addNode("C2", new sn.Convolution(10, 0), "P1 Crop1") .addNode("Crop1", new sn.Crop(new sn.rect(0, 0, 487, 487)), "Rsz1") .addNode("Rsz1", new sn.Resize(new sn.diap(0, 10), new sn.diap(0, 10)), "Conc1") .addNode("P1", new sn.Pooling(), "C3") .addNode("C3", new sn.Convolution(10, -1), "C4") .addNode("C4", new sn.Convolution(10, 0), "P2 Crop2") .addNode("Crop2", new sn.Crop(new sn.rect(0, 0, 247, 247)), "Rsz2") .addNode("Rsz2", new sn.Resize(new sn.diap(0, 10), new sn.diap(0, 10)), "Conc2") .addNode("P2", new sn.Pooling(), "C5") .addNode("C5", new sn.Convolution(10, 0), "C6") .addNode("C6", new sn.Convolution(10, 0), "DC1") .addNode("DC1", new sn.Deconvolution(10, 0), "Rsz3") .addNode("Rsz3", new sn.Resize(new sn.diap(0, 10), new sn.diap(10, 20)), "Conc2") .addNode("Conc2", new sn.Concat("Rsz2 Rsz3"), "C7") .addNode("C7", new sn.Convolution(10, 0), "C8") .addNode("C8", new sn.Convolution(10, 0), "DC2") .addNode("DC2", new sn.Deconvolution(10, 0), "Rsz4") .addNode("Rsz4", new sn.Resize(new sn.diap(0, 10), new sn.diap(10, 20)), "Conc1") .addNode("Conc1", new sn.Concat("Rsz1 Rsz4"), "C9") .addNode("C9", new sn.Convolution(10, 0), "C10"); sn.Convolution convOut = new sn.Convolution(1, 0); convOut.act = new sn.active(sn.active.type.sigmoid); snet.addNode("C10", convOut, "LS") .addNode("LS", new sn.LossFunction(sn.lossType.type.binaryCrossEntropy), "Output"); string imgPath = "c://cpp//other//sunnet//example//unet//images//"; string targPath = "c://cpp//other//sunnet//example//unet//labels//"; uint batchSz = 3, w = 512, h = 512, wo = 483, ho = 483; float lr = 0.001F; List <string> imgName = new List <string>(); List <string> targName = new List <string>(); if (!loadImage(imgPath, imgName) || !loadImage(targPath, targName)) { Console.WriteLine("Error 'loadImage' path: " + imgPath); Console.ReadKey(); return; } string wpath = "c:/cpp/w.dat"; // if (snet.loadAllWeightFromFile(wpath)) // Console.WriteLine("Load weight ok path: " + wpath); // else // Console.WriteLine("Load weight err path: " + wpath); sn.Tensor inLayer = new sn.Tensor(new sn.snLSize(w, h, 1, batchSz)); sn.Tensor targetLayer = new sn.Tensor(new sn.snLSize(wo, ho, 1, batchSz)); sn.Tensor outLayer = new sn.Tensor(new sn.snLSize(wo, ho, 1, batchSz)); float accuratSumm = 0; for (int k = 0; k < 1000; ++k) { targetLayer.reset(); Random rnd = new Random(); for (int i = 0; i < batchSz; ++i) { // image int nimg = rnd.Next(0, imgName.Count); // read Bitmap img = new Bitmap(imgName[nimg]); unsafe { float *refData = inLayer.data() + i * w * h; int nr = img.Height, nc = img.Width; System.Drawing.Imaging.BitmapData bmd = img.LockBits(new Rectangle(0, 0, img.Width, img.Height), System.Drawing.Imaging.ImageLockMode.ReadWrite, img.PixelFormat); IntPtr ptData = bmd.Scan0; for (int r = 0; r < nr; ++r) { for (int c = 0; c < nc; ++c) { refData[r * nc + c] = Marshal.ReadByte(ptData); ptData += 4; } } img.UnlockBits(bmd); Bitmap imgTrg = new Bitmap(new Bitmap(targName[nimg]), new Size((int)wo, (int)ho)); nr = imgTrg.Height; nc = imgTrg.Width; float *targData = targetLayer.data() + i * wo * ho; System.Drawing.Imaging.BitmapData bmdTrg = imgTrg.LockBits(new Rectangle(0, 0, nc, nr), System.Drawing.Imaging.ImageLockMode.ReadWrite, imgTrg.PixelFormat); IntPtr ptTrg = bmdTrg.Scan0; for (int r = 0; r < nr; ++r) { for (int c = 0; c < nc; ++c) { targData[r * nc + c] = (float)(Marshal.ReadByte(ptTrg) / 255.0); ptTrg += 4; } } imgTrg.UnlockBits(bmdTrg); } } // training float accurat = 0; snet.training(lr, inLayer, outLayer, targetLayer, ref accurat); // calc error accuratSumm += accurat; Console.WriteLine(k.ToString() + " accurate " + (accuratSumm / (k + 1)).ToString() + " " + snet.getLastErrorStr()); } if (snet.saveAllWeightToFile(wpath)) { Console.WriteLine("Save weight ok path: " + wpath); } else { Console.WriteLine("Save weight err path: " + wpath); } Console.ReadKey(); return; }
static void Main(string[] args) { sn.Net snet = new sn.Net(); string ver = snet.versionLib(); Console.WriteLine("Version snlib " + ver); snet.addNode("Input", new sn.Input(), "C1") .addNode("C1", new sn.Convolution(15, 0, sn.calcMode.type.CUDA), "C2") .addNode("C2", new sn.Convolution(15, 0, sn.calcMode.type.CUDA), "P1") .addNode("P1", new sn.Pooling(sn.calcMode.type.CUDA), "FC1") .addNode("FC1", new sn.FullyConnected(128, sn.calcMode.type.CUDA), "FC2") .addNode("FC2", new sn.FullyConnected(10, sn::calcMode.type.CUDA), "LS") .addNode("LS", new sn.LossFunction(sn.lossType.type.softMaxToCrossEntropy), "Output"); string imgPath = "c://C++//skyNet//example//mnist//images//"; uint batchSz = 100, classCnt = 10, w = 28, h = 28; float lr = 0.001F; List <List <string> > imgName = new List <List <string> >(); List <int> imgCntDir = new List <int>(10); Dictionary <string, Bitmap> images = new Dictionary <string, Bitmap>(); if (!loadImage(imgPath, classCnt, imgName, imgCntDir)) { Console.WriteLine("Error 'loadImage' path: " + imgPath); Console.ReadKey(); return; } string wpath = "c:/C++/w.dat"; if (snet.loadAllWeightFromFile(wpath)) { Console.WriteLine("Load weight ok path: " + wpath); } else { Console.WriteLine("Load weight err path: " + wpath); } sn.Tensor inLayer = new sn.Tensor(new sn.snLSize(w, h, 1, batchSz)); sn.Tensor targetLayer = new sn.Tensor(new sn.snLSize(classCnt, 1, 1, batchSz)); sn.Tensor outLayer = new sn.Tensor(new sn.snLSize(classCnt, 1, 1, batchSz)); float accuratSumm = 0; for (int k = 0; k < 1000; ++k) { targetLayer.reset(); Random rnd = new Random(); for (int i = 0; i < batchSz; ++i) { // directory int ndir = rnd.Next(0, (int)classCnt); while (imgCntDir[ndir] == 0) { ndir = rnd.Next(0, (int)classCnt); } // image int nimg = rnd.Next(0, imgCntDir[ndir]); // read Bitmap img; string fn = imgName[ndir][nimg]; if (images.ContainsKey(fn)) { img = images[fn]; } else { img = new Bitmap(fn); images.Add(fn, img); } unsafe { float *refData = inLayer.data() + i * w * h; int nr = img.Height, nc = img.Width; System.Drawing.Imaging.BitmapData bmd = img.LockBits(new Rectangle(0, 0, img.Width, img.Height), System.Drawing.Imaging.ImageLockMode.ReadWrite, img.PixelFormat); IntPtr pt = bmd.Scan0; for (int r = 0; r < nr; ++r) { for (int c = 0; c < nc; ++c) { refData[r * nc + c] = Marshal.ReadByte(pt); pt += 4; } } img.UnlockBits(bmd); float *tarData = targetLayer.data() + classCnt * i; tarData[ndir] = 1; } } // training float accurat = 0; snet.training(lr, inLayer, outLayer, targetLayer, ref accurat); // calc error int accCnt = 0; unsafe { float *targetData = targetLayer.data(); float *outData = outLayer.data(); int bsz = (int)batchSz; for (int i = 0; i < bsz; ++i) { float *refOutput = outData + i * classCnt; float maxval = refOutput[0]; int maxOutInx = 0; for (int j = 1; j < classCnt; ++j) { if (refOutput[j] > maxval) { maxval = refOutput[j]; maxOutInx = j; } } float *refTarget = targetData + i * classCnt; maxval = refTarget[0]; int maxTargInx = 0; for (int j = 1; j < classCnt; ++j) { if (refTarget[j] > maxval) { maxval = refTarget[j]; maxTargInx = j; } } if (maxTargInx == maxOutInx) { ++accCnt; } } } accuratSumm += (float)accCnt / batchSz; Console.WriteLine(k.ToString() + " accurate " + (accuratSumm / (k + 1)).ToString() + " " + snet.getLastErrorStr()); } if (snet.saveAllWeightToFile(wpath)) { Console.WriteLine("Save weight ok path: " + wpath); } else { Console.WriteLine("Save weight err path: " + wpath); } Console.ReadKey(); return; }
static void Main(string[] args) { // using python for create file 'resNet50Weights.dat' as: // CMD: cd c:\cpp\other\skyNet\example\resnet50\ // CMD: python createNet.py string arch = File.ReadAllText(@"c:\cpp\other\skyNet\example\resnet50\resNet50Struct.json", Encoding.UTF8); sn.Net snet = new sn.Net(arch, @"c:\cpp\other\skyNet\example\resnet50\resNet50Weights.dat"); if (snet.getLastErrorStr().Count() > 0) { Console.WriteLine("Error loadAllWeightFromFile: " + snet.getLastErrorStr()); Console.ReadKey(); return; } string imgPath = @"c:\cpp\other\skyNet\example\resnet50\images\elephant.jpg"; int classCnt = 1000, w = 224, h = 224; sn.Tensor inLayer = new sn.Tensor(new snLSize((UInt64)w, (UInt64)h, 3, 1)); sn.Tensor outLayer = new sn.Tensor(new snLSize((UInt64)classCnt, 1, 1, 1)); // read Bitmap img = new Bitmap(Image.FromFile(imgPath), new Size(w, h)); unsafe { float *refData = inLayer.data(); System.Drawing.Imaging.BitmapData bmd = img.LockBits(new Rectangle(0, 0, img.Width, img.Height), System.Drawing.Imaging.ImageLockMode.ReadWrite, img.PixelFormat); // B IntPtr pt = bmd.Scan0; for (int r = 0; r < h; ++r) { for (int c = 0; c < w; ++c) { refData[r * w + c] = Marshal.ReadByte(pt + 3); pt += 4; } } // G pt = bmd.Scan0; refData += h * w; for (int r = 0; r < h; ++r) { for (int c = 0; c < w; ++c) { refData[r * w + c] = Marshal.ReadByte(pt + 2); pt += 4; } } // R pt = bmd.Scan0; refData += h * w; for (int r = 0; r < h; ++r) { for (int c = 0; c < w; ++c) { refData[r * w + c] = Marshal.ReadByte(pt + 1); pt += 4; } } img.UnlockBits(bmd); } // training snet.forward(false, inLayer, outLayer); float maxval = 0; int maxOutInx = 0; unsafe { float *refOutput = outLayer.data(); maxval = refOutput[0]; for (int j = 1; j < classCnt; ++j) { if (refOutput[j] > maxval) { maxval = refOutput[j]; maxOutInx = j; } } } // for check: c:\cpp\other\skyNet\example\resnet50\imagenet_class_index.json Console.WriteLine("inx " + maxOutInx.ToString() + " accurate " + maxval.ToString() + " " + snet.getLastErrorStr()); Console.ReadKey(); return; }