// Splits a polygon into two pieces, or categorizes it as outside, inside or aligned #region PolygonSplit // Note: This method is not optimized! Code is simplified for clarity! // for example: Plane.Distance / Plane.OnSide should be inlined manually and shouldn't use enums, but floating point values directly! public PolygonSplitResult PolygonSplit(Plane cuttingPlane, Vector3 translation, ref Polygon inputPolygon, out Polygon outsidePolygon) { HalfEdge prev = Edges[inputPolygon.FirstIndex]; HalfEdge current = Edges[prev.NextIndex]; HalfEdge next = Edges[current.NextIndex]; HalfEdge last = next; HalfEdge enterEdge = null; HalfEdge exitEdge = null; var prevVertex = Vertices[prev.VertexIndex]; var prevDistance = cuttingPlane.Distance(prevVertex); // distance to previous vertex var prevSide = Plane.OnSide(prevDistance); // side of plane of previous vertex var currentVertex = Vertices[current.VertexIndex]; var currentDistance = cuttingPlane.Distance(currentVertex); // distance to current vertex var currentSide = Plane.OnSide(currentDistance); // side of plane of current vertex do { var nextVertex = Vertices[next.VertexIndex]; var nextDistance = cuttingPlane.Distance(nextVertex); // distance to next vertex var nextSide = Plane.OnSide(nextDistance); // side of plane of next vertex if (prevSide != currentSide) // check if edge crossed the plane ... { if (currentSide != PlaneSideResult.Intersects) // prev:inside/outside - current:inside/outside - next:?? { if (prevSide != PlaneSideResult.Intersects) // prev:inside/outside - current:outside - next:?? { // Calculate intersection of edge with plane split the edge into two, inserting the new vertex var newVertex = Plane.Intersection(prevVertex, currentVertex, prevDistance, currentDistance); var newEdge = EdgeSplit(current, newVertex); if (prevSide == PlaneSideResult.Inside) // prev:inside - current:outside - next:?? { //edge01 exits: // // outside // 1 // * // ......./........ intersect // / // 0 // inside exitEdge = current; } else if (prevSide == PlaneSideResult.Outside) // prev:outside - current:inside - next:?? { //edge01 enters: // // outside // 0 // \ // .......\........ intersect // * // 1 // inside enterEdge = current; } prevDistance = 0; prev = Edges[prev.NextIndex]; prevSide = PlaneSideResult.Intersects; if (exitEdge != null && enterEdge != null) { break; } current = Edges[prev.NextIndex]; currentVertex = Vertices[current.VertexIndex]; next = Edges[current.NextIndex]; nextVertex = Vertices[next.VertexIndex]; } } else // prev:?? - current:intersects - next:?? { if (prevSide == PlaneSideResult.Intersects || // prev:intersects - current:intersects - next:?? nextSide == PlaneSideResult.Intersects || // prev:?? - current:intersects - next:intersects prevSide == nextSide) // prev:inside/outde - current:intersects - next:inside/outde { if (prevSide == PlaneSideResult.Inside || // prev:inside - current:intersects - next:intersects/inside nextSide == PlaneSideResult.Inside) // prev:intersects/inside - current:intersects - next:inside { // outside // 0 1 // --------*....... intersect // \ // 2 // inside // // outside // 1 2 // ........*------- intersect // / // 0 // inside // // outside // 1 //........*....... intersect // / \ // 0 2 // inside // prevSide = PlaneSideResult.Inside; enterEdge = exitEdge = null; break; } else if (prevSide == PlaneSideResult.Outside || // prev:outside - current:intersects - next:intersects/outside nextSide == PlaneSideResult.Outside) // prev:intersects/outside - current:intersects - next:outside { // outside // 2 // / //..------*....... intersect // 0 1 // inside // // outside // 0 // \ //........*------- intersect // 1 2 // inside // // outside // 0 2 // \ / //........*....... intersect // 1 // inside // prevSide = PlaneSideResult.Outside; enterEdge = exitEdge = null; break; } } else // prev:inside/outside - current:intersects - next:inside/outside { if (prevSide == PlaneSideResult.Inside) // prev:inside - current:intersects - next:outside { //find exit edge: // // outside // 2 // 1 / // ........*....... intersect // / // 0 // inside exitEdge = current; if (enterEdge != null) { break; } } else // prev:outside - current:intersects - next:inside { //find enter edge: // // outside // 0 // \ 1 // ........*....... intersect // \ // 2 // inside enterEdge = current; if (exitEdge != null) { break; } } } } } prev = current; current = next; next = Edges[next.NextIndex]; prevDistance = currentDistance; currentDistance = nextDistance; prevSide = currentSide; currentSide = nextSide; prevVertex = currentVertex; currentVertex = nextVertex; } while (next != last); // We should never have only one edge crossing the plane .. Debug.Assert((enterEdge == null) == (exitEdge == null)); // Check if we have an edge that exits and an edge that enters the plane and split the polygon into two if we do if (enterEdge != null && exitEdge != null) { //enter . // . // =====>*-----> // . // //outside . inside // . // <-----*<===== // . // . exit outsidePolygon = new Polygon(); var outsidePolygonIndex = (short)this.Polygons.Count; this.Polygons.Add(outsidePolygon); var outsideEdge = new HalfEdge(); var outsideEdgeIndex = (short)Edges.Count; var insideEdge = new HalfEdge(); var insideEdgeIndex = (short)(outsideEdgeIndex + 1); outsideEdge.TwinIndex = insideEdgeIndex; insideEdge.TwinIndex = outsideEdgeIndex; //insideEdge.PolygonIndex = inputPolygonIndex;// index does not change outsideEdge.PolygonIndex = outsidePolygonIndex; outsideEdge.VertexIndex = exitEdge.VertexIndex; insideEdge.VertexIndex = enterEdge.VertexIndex; outsideEdge.NextIndex = exitEdge.NextIndex; insideEdge.NextIndex = enterEdge.NextIndex; exitEdge.NextIndex = insideEdgeIndex; enterEdge.NextIndex = outsideEdgeIndex; outsidePolygon.FirstIndex = outsideEdgeIndex; inputPolygon.FirstIndex = insideEdgeIndex; outsidePolygon.Visible = inputPolygon.Visible; outsidePolygon.Category = inputPolygon.Category; outsidePolygon.PlaneIndex = inputPolygon.PlaneIndex; Edges.Add(outsideEdge); Edges.Add(insideEdge); // calculate the bounds of the polygons outsidePolygon.Bounds.Clear(); var first = Edges[outsidePolygon.FirstIndex]; var iterator = first; do { outsidePolygon.Bounds.Add(Vertices[iterator.VertexIndex]); iterator.PolygonIndex = outsidePolygonIndex; iterator = Edges[iterator.NextIndex]; } while (iterator != first); inputPolygon.Bounds.Clear(); first = Edges[inputPolygon.FirstIndex]; iterator = first; do { inputPolygon.Bounds.Add(Vertices[iterator.VertexIndex]); iterator = Edges[iterator.NextIndex]; } while (iterator != first); return(PolygonSplitResult.Split); } else { outsidePolygon = null; switch (prevSide) { case PlaneSideResult.Inside: return(PolygonSplitResult.CompletelyInside); case PlaneSideResult.Outside: return(PolygonSplitResult.CompletelyOutside); default: case PlaneSideResult.Intersects: { var polygonPlane = Planes[inputPolygon.PlaneIndex]; var result = Vector3.DotProduct(polygonPlane.Normal, cuttingPlane.Normal); if (result > 0) { return(PolygonSplitResult.PlaneAligned); } else { return(PolygonSplitResult.PlaneOppositeAligned); } } } } }
public static CSGMesh CreateFromPlanes(Plane[] brushPlanes) { var planes = new Plane[brushPlanes.Length]; for (int i = 0; i < brushPlanes.Length; i++) { var plane = brushPlanes[i]; planes[i] = new Plane(plane.A, plane.B, plane.C, plane.D); } var pointIntersections = new List <PointIntersection>(planes.Length * planes.Length); var intersectingPlanes = new List <short>(); var vertices = new List <Vector3>(); var edges = new List <HalfEdge>(); // Find all point intersections where 3 (or more planes) intersect for (short planeIndex1 = 0; planeIndex1 < planes.Length - 2; planeIndex1++) { var plane1 = planes[planeIndex1]; for (short planeIndex2 = (short)(planeIndex1 + 1); planeIndex2 < planes.Length - 1; planeIndex2++) { var plane2 = planes[planeIndex2]; for (short planeIndex3 = (short)(planeIndex2 + 1); planeIndex3 < planes.Length; planeIndex3++) { var plane3 = planes[planeIndex3]; // Calculate the intersection var vertex = Plane.Intersection(plane1, plane2, plane3); // Check if the intersection is valid if (float.IsNaN(vertex.X) || float.IsNaN(vertex.Y) || float.IsNaN(vertex.Z) || float.IsInfinity(vertex.X) || float.IsInfinity(vertex.Y) || float.IsInfinity(vertex.Z)) { continue; } intersectingPlanes.Clear(); intersectingPlanes.Add(planeIndex1); intersectingPlanes.Add(planeIndex2); intersectingPlanes.Add(planeIndex3); for (short planeIndex4 = 0; planeIndex4 < planes.Length; planeIndex4++) { if (planeIndex4 == planeIndex1 || planeIndex4 == planeIndex2 || planeIndex4 == planeIndex3) { continue; } var plane4 = planes[planeIndex4]; var side = plane4.OnSide(vertex); if (side == PlaneSideResult.Intersects) { if (planeIndex4 < planeIndex3) { // Already found this vertex goto SkipIntersection; } // We've found another plane which goes trough our found intersection point intersectingPlanes.Add(planeIndex4); } else if (side == PlaneSideResult.Outside) { // Intersection is outside of brush goto SkipIntersection; } } var vertexIndex = (short)vertices.Count; vertices.Add(vertex); // Add intersection point to our list pointIntersections.Add(new PointIntersection(vertexIndex, intersectingPlanes)); SkipIntersection: ; } } } var foundPlanes = new short[2]; // Find all our intersection edges which are formed by a pair of planes // (this could probably be done inside the previous loop) for (int i = 0; i < pointIntersections.Count; i++) { var pointIntersectionA = pointIntersections[i]; for (int j = i + 1; j < pointIntersections.Count; j++) { var pointIntersectionB = pointIntersections[j]; var planesIndicesA = pointIntersectionA.PlaneIndices; var planesIndicesB = pointIntersectionB.PlaneIndices; short foundPlaneIndex = 0; foreach (var currentPlaneIndex in planesIndicesA) { if (!planesIndicesB.Contains(currentPlaneIndex)) { continue; } foundPlanes[foundPlaneIndex] = currentPlaneIndex; foundPlaneIndex++; if (foundPlaneIndex == 2) { break; } } // If foundPlaneIndex is 0 or 1 then either this combination does not exist, // or only goes trough one point if (foundPlaneIndex < 2) { continue; } // Create our found intersection edge var halfEdgeA = new HalfEdge(); var halfEdgeAIndex = (short)edges.Count; edges.Add(halfEdgeA); var halfEdgeB = new HalfEdge(); var halfEdgeBIndex = (short)edges.Count; edges.Add(halfEdgeB); halfEdgeA.TwinIndex = halfEdgeBIndex; halfEdgeB.TwinIndex = halfEdgeAIndex; halfEdgeA.VertexIndex = pointIntersectionA.VertexIndex; halfEdgeB.VertexIndex = pointIntersectionB.VertexIndex; // Add it to our points pointIntersectionA.Edges.Add(new EdgeIntersection( halfEdgeA, foundPlanes[0], foundPlanes[1])); pointIntersectionB.Edges.Add(new EdgeIntersection( halfEdgeB, foundPlanes[0], foundPlanes[1])); } } var polygons = new List <Polygon>(); for (short i = 0; i < (short)planes.Length; i++) { var polygon = new Polygon(); polygon.PlaneIndex = i; polygons.Add(polygon); } var bounds = new AABB(); var direction = new Vector3(); for (int i = pointIntersections.Count - 1; i >= 0; i--) { var pointIntersection = pointIntersections[i]; var pointEdges = pointIntersection.Edges; // Make sure that we have at least 2 edges ... // This may happen when a plane only intersects at a single edge. if (pointEdges.Count <= 2) { pointIntersections.RemoveAt(i); continue; } var vertexIndex = pointIntersection.VertexIndex; var vertex = vertices[vertexIndex]; for (int j = 0; j < pointEdges.Count - 1; j++) { var edge1 = pointEdges[j]; for (int k = j + 1; k < pointEdges.Count; k++) { var edge2 = pointEdges[k]; int planeIndex1 = -1; int planeIndex2 = -1; // Determine if and which of our 2 planes are identical if (edge1.PlaneIndices[0] == edge2.PlaneIndices[0]) { planeIndex1 = 0; planeIndex2 = 0; } else if (edge1.PlaneIndices[0] == edge2.PlaneIndices[1]) { planeIndex1 = 0; planeIndex2 = 1; } else if (edge1.PlaneIndices[1] == edge2.PlaneIndices[0]) { planeIndex1 = 1; planeIndex2 = 0; } else if (edge1.PlaneIndices[1] == edge2.PlaneIndices[1]) { planeIndex1 = 1; planeIndex2 = 1; } else { continue; } HalfEdge ingoing; HalfEdge outgoing; short outgoingIndex; var shared_plane = planes[edge1.PlaneIndices[planeIndex1]]; var edge1_plane = planes[edge1.PlaneIndices[1 - planeIndex1]]; var edge2_plane = planes[edge2.PlaneIndices[1 - planeIndex2]]; direction = Vector3.CrossProduct(shared_plane.Normal, edge1_plane.Normal); // Determine the orientation of our two edges to determine // which edge is in-going, and which one is out-going if (Vector3.DotProduct(direction, edge2_plane.Normal) < 0) { ingoing = edge2.Edge; outgoingIndex = edge1.Edge.TwinIndex; outgoing = edges[outgoingIndex]; } else { ingoing = edge1.Edge; outgoingIndex = edge2.Edge.TwinIndex; outgoing = edges[outgoingIndex]; } // Link the out-going half-edge to the in-going half-edge ingoing.NextIndex = outgoingIndex; // Add reference to polygon to half-edge, and make sure our // polygon has a reference to a half-edge // Since a half-edge, in this case, serves as a circular // linked list this just works. var polygonIndex = edge1.PlaneIndices[planeIndex1]; ingoing.PolygonIndex = polygonIndex; outgoing.PolygonIndex = polygonIndex; var polygon = polygons[polygonIndex]; polygon.FirstIndex = outgoingIndex; polygon.Bounds.Add(vertex); } } // Add the intersection point to the area of our bounding box bounds.Add(vertex); } return(new CSGMesh(planes, polygons, edges, vertices, bounds)); }