fabs() static private méthode

Computes the absolute value of a float.
static private fabs ( float scalar ) : float
scalar float The float of which to compute the absolute * value.
Résultat float
Exemple #1
0
        /**
         * <summary>Solves a two-dimensional linear program subject to linear
         * constraints defined by lines and a circular constraint.</summary>
         *
         * <param name="lines">Lines defining the linear constraints.</param>
         * <param name="numObstLines">Count of obstacle lines.</param>
         * <param name="beginLine">The line on which the 2-d linear program
         * failed.</param>
         * <param name="radius">The radius of the circular constraint.</param>
         * <param name="result">A reference to the result of the linear program.
         * </param>
         */
        private void linearProgram3(IList <Line> lines, int numObstLines, int beginLine, float radius, ref Vector2 result)
        {
            float distance = 0.0f;

            for (int i = beginLine; i < lines.Count; ++i)
            {
                if (RVOMath.det(lines[i].direction, lines[i].point - result) > distance)
                {
                    /* Result does not satisfy constraint of line i. */
                    IList <Line> projLines = new List <Line>();
                    for (int ii = 0; ii < numObstLines; ++ii)
                    {
                        projLines.Add(lines[ii]);
                    }

                    for (int j = numObstLines; j < i; ++j)
                    {
                        Line line;

                        float determinant = RVOMath.det(lines[i].direction, lines[j].direction);

                        if (RVOMath.fabs(determinant) <= RVOMath.RVO_EPSILON)
                        {
                            /* Line i and line j are parallel. */
                            if (Vector2.Dot(lines[i].direction, lines[j].direction) > 0.0f)
                            {
                                /* Line i and line j point in the same direction. */
                                continue;
                            }
                            else
                            {
                                /* Line i and line j point in opposite direction. */
                                line.point = 0.5f * (lines[i].point + lines[j].point);
                            }
                        }
                        else
                        {
                            line.point = lines[i].point + (RVOMath.det(lines[j].direction, lines[i].point - lines[j].point) / determinant) * lines[i].direction;
                        }

                        line.direction = RVOMath.normalize(lines[j].direction - lines[i].direction);
                        projLines.Add(line);
                    }

                    Vector2 tempResult = result;
                    if (linearProgram2(projLines, radius, new Vector2(-lines[i].direction.y, lines[i].direction.x), true, ref result) < projLines.Count)
                    {
                        /*
                         * This should in principle not happen. The result is by
                         * definition already in the feasible region of this
                         * linear program. If it fails, it is due to small
                         * floating point error, and the current result is kept.
                         */
                        result = tempResult;
                    }

                    distance = RVOMath.det(lines[i].direction, lines[i].point - result);
                }
            }
        }
Exemple #2
0
        /**
         * <summary>Solves a one-dimensional linear program on a specified line
         * subject to linear constraints defined by lines and a circular
         * constraint.</summary>
         *
         * <returns>True if successful.</returns>
         *
         * <param name="lines">Lines defining the linear constraints.</param>
         * <param name="lineNo">The specified line constraint.</param>
         * <param name="radius">The radius of the circular constraint.</param>
         * <param name="optVelocity">The optimization velocity.</param>
         * <param name="directionOpt">True if the direction should be optimized.
         * </param>
         * <param name="result">A reference to the result of the linear program.
         * </param>
         */
        private bool linearProgram1(IList <Line> lines, int lineNo, float radius, Vector2 optVelocity, bool directionOpt, ref Vector2 result)
        {
            float dotProduct   = Vector2.Dot(lines[lineNo].point, lines[lineNo].direction);
            float discriminant = RVOMath.sqr(dotProduct) + RVOMath.sqr(radius) - RVOMath.absSq(lines[lineNo].point);

            if (discriminant < 0.0f)
            {
                /* Max speed circle fully invalidates line lineNo. */
                return(false);
            }

            float sqrtDiscriminant = RVOMath.sqrt(discriminant);
            float tLeft            = -dotProduct - sqrtDiscriminant;
            float tRight           = -dotProduct + sqrtDiscriminant;

            for (int i = 0; i < lineNo; ++i)
            {
                float denominator = RVOMath.det(lines[lineNo].direction, lines[i].direction);
                float numerator   = RVOMath.det(lines[i].direction, lines[lineNo].point - lines[i].point);

                if (RVOMath.fabs(denominator) <= RVOMath.RVO_EPSILON)
                {
                    /* Lines lineNo and i are (almost) parallel. */
                    if (numerator < 0.0f)
                    {
                        return(false);
                    }

                    continue;
                }

                float t = numerator / denominator;

                if (denominator >= 0.0f)
                {
                    /* Line i bounds line lineNo on the right. */
                    tRight = Mathf.Min(tRight, t);
                }
                else
                {
                    /* Line i bounds line lineNo on the left. */
                    tLeft = Mathf.Max(tLeft, t);
                }

                if (tLeft > tRight)
                {
                    return(false);
                }
            }

            if (directionOpt)
            {
                /* Optimize direction. */
                if (Vector2.Dot(optVelocity, lines[lineNo].direction) > 0.0f)
                {
                    /* Take right extreme. */
                    result = lines[lineNo].point + tRight * lines[lineNo].direction;
                }
                else
                {
                    /* Take left extreme. */
                    result = lines[lineNo].point + tLeft * lines[lineNo].direction;
                }
            }
            else
            {
                /* Optimize closest point. */
                float t = Vector2.Dot(lines[lineNo].direction, (optVelocity - lines[lineNo].point));

                if (t < tLeft)
                {
                    result = lines[lineNo].point + tLeft * lines[lineNo].direction;
                }
                else if (t > tRight)
                {
                    result = lines[lineNo].point + tRight * lines[lineNo].direction;
                }
                else
                {
                    result = lines[lineNo].point + t * lines[lineNo].direction;
                }
            }

            return(true);
        }
Exemple #3
0
        /**
         * <summary>Solves a two-dimensional linear program subject to linear
         * constraints defined by lines and a circular constraint.</summary>
         *
         * <param name="lines">Lines defining the linear constraints.</param>
         * <param name="numObstLines">Count of obstacle lines.</param>
         * <param name="beginLine">The line on which the 2-d linear program
         * failed.</param>
         * <param name="radius">The radius of the circular constraint.</param>
         * <param name="result">A reference to the result of the linear program.
         * </param>
         */
        private void linearProgram3(IList <Line> lines, int numObstLines, int beginLine, float radius, ref Vector2 result)
        {
            if (mass_ != 1)
            {
                Debug.Log("linearProgram3 beginLine:" + beginLine);
            }

            float distance = 0.0f;

            // 遍历所有剩余ORCA线
            for (int i = beginLine; i < lines.Count; ++i)
            {
                // 每一条 ORCA 线都需要精确的做出处理,distance 为 最大违规的速度
                if (RVOMath.det(lines[i].direction, lines[i].point - result) > distance)
                {
                    /* Result does not satisfy constraint of line i. */
                    IList <Line> projLines = new List <Line>();
                    // 1.静态阻挡的orca线直接加到projLines中
                    for (int ii = 0; ii < numObstLines; ++ii)
                    {
                        projLines.Add(lines[ii]);
                    }
                    // 2.动态阻挡的orca线需要重新计算line,从第一个非静态阻挡到当前的orca线
                    for (int j = numObstLines; j < i; ++j)
                    {
                        Line line;

                        float determinant = RVOMath.det(lines[i].direction, lines[j].direction);

                        if (RVOMath.fabs(determinant) <= RVOMath.RVO_EPSILON)
                        {
                            /* Line i and line j are parallel. */
                            if (lines[i].direction * lines[j].direction > 0.0f)
                            {
                                /* Line i and line j point in the same direction. */
                                // 2-1 两条线平行且同向
                                continue;
                            }
                            else
                            {
                                /* Line i and line j point in opposite direction. */
                                // 2-2 两条线平行且反向
                                line.point = 0.5f * (lines[i].point + lines[j].point);
                            }
                        }
                        else
                        {
                            // 2-3 两条线不平行
                            line.point = lines[i].point + (RVOMath.det(lines[j].direction, lines[i].point - lines[j].point) / determinant) * lines[i].direction;
                        }
                        // 计算ORCA线的方向
                        line.direction = RVOMath.normalize(lines[j].direction - lines[i].direction);
                        projLines.Add(line);
                    }
                    // 3.再次计算最优速度
                    Vector2 tempResult = result;
                    // 注意这里的 new Vector2(-lines[i].direction.y(), lines[i].direction.x()) 是方向向量
                    if (linearProgram2(projLines, radius, new Vector2(-lines[i].direction.y(), lines[i].direction.x()), true, ref result) < projLines.Count)
                    {
                        /*
                         * This should in principle not happen. The result is by
                         * definition already in the feasible region of this
                         * linear program. If it fails, it is due to small
                         * floating point error, and the current result is kept.
                         */
                        result = tempResult;
                    }

                    distance = RVOMath.det(lines[i].direction, lines[i].point - result);
                }
            }
        }