//! minimize the optimization problem P public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria) { EndCriteria.Type ecType = EndCriteria.Type.None; P.reset(); Vector x_ = P.currentValue(); int iterationNumber_ = 0; int stationaryStateIterationNumber_ = 0; lineSearch_.searchDirection = new Vector(x_.Count); bool end; // function and squared norm of gradient values; double normdiff; // classical initial value for line-search step double t = 1.0; // Set gold at the size of the optimization problem search direction Vector gold = new Vector(lineSearch_.searchDirection.Count); Vector gdiff = new Vector(lineSearch_.searchDirection.Count); P.setFunctionValue(P.valueAndGradient(gold, x_)); lineSearch_.searchDirection = gold * -1.0; P.setGradientNormValue(Vector.DotProduct(gold, gold)); normdiff = Math.Sqrt(P.gradientNormValue()); do { // Linesearch t = lineSearch_.value(P, ref ecType, endCriteria, t); if (!(lineSearch_.succeed())) { throw new ApplicationException("line-search failed!"); } // End criteria // FIXME: it's never been used! ??? // , normdiff end = endCriteria.value(iterationNumber_, ref stationaryStateIterationNumber_, true, P.functionValue(), Math.Sqrt(P.gradientNormValue()), lineSearch_.lastFunctionValue(), Math.Sqrt(lineSearch_.lastGradientNorm2()), ref ecType); // Updates // New point x_ = lineSearch_.lastX(); // New function value P.setFunctionValue(lineSearch_.lastFunctionValue()); // New gradient and search direction vectors gdiff = gold - lineSearch_.lastGradient(); normdiff = Math.Sqrt(Vector.DotProduct(gdiff, gdiff)); gold = lineSearch_.lastGradient(); lineSearch_.searchDirection = gold * -1.0; // New gradient squared norm P.setGradientNormValue(lineSearch_.lastGradientNorm2()); // Increase interation number ++iterationNumber_; } while (end == false); P.setCurrentValue(x_); return(ecType); }
//! minimize the optimization problem P public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria) { EndCriteria.Type ecType = EndCriteria.Type.None; P.reset(); Vector x_ = P.currentValue(); int iterationNumber_ = 0; int stationaryStateIterationNumber_ = 0; lineSearch_.searchDirection = new Vector(x_.Count); bool end; // function and squared norm of gradient values; double normdiff; // classical initial value for line-search step double t = 1.0; // Set gold at the size of the optimization problem search direction Vector gold = new Vector(lineSearch_.searchDirection.Count); Vector gdiff = new Vector(lineSearch_.searchDirection.Count); P.setFunctionValue(P.valueAndGradient(gold, x_)); lineSearch_.searchDirection = gold*-1.0; P.setGradientNormValue(Vector.DotProduct(gold, gold)); normdiff = Math.Sqrt(P.gradientNormValue()); do { // Linesearch t = lineSearch_.value(P, ref ecType, endCriteria, t); if (!(lineSearch_.succeed())) throw new ApplicationException("line-search failed!"); // End criteria // FIXME: it's never been used! ??? // , normdiff end = endCriteria.value(iterationNumber_, ref stationaryStateIterationNumber_, true, P.functionValue(), Math.Sqrt(P.gradientNormValue()), lineSearch_.lastFunctionValue(), Math.Sqrt(lineSearch_.lastGradientNorm2()), ref ecType); // Updates // New point x_ = lineSearch_.lastX(); // New function value P.setFunctionValue(lineSearch_.lastFunctionValue()); // New gradient and search direction vectors gdiff = gold - lineSearch_.lastGradient(); normdiff = Math.Sqrt(Vector.DotProduct(gdiff, gdiff)); gold = lineSearch_.lastGradient(); lineSearch_.searchDirection = gold*-1.0; // New gradient squared norm P.setGradientNormValue(lineSearch_.lastGradientNorm2()); // Increase interation number ++iterationNumber_; } while (end == false); P.setCurrentValue(x_); return ecType; }
//! solve the optimization problem P public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria) { // Initializations double ftol = endCriteria.functionEpsilon(); int maxStationaryStateIterations_ = endCriteria.maxStationaryStateIterations(); EndCriteria.Type ecType = EndCriteria.Type.None; // reset end criteria P.reset(); // reset problem Vector x_ = P.currentValue(); // store the starting point int iterationNumber_ =0; // stationaryStateIterationNumber_=0 lineSearch_.searchDirection = new Vector(x_.Count); // dimension line search bool done = false; // function and squared norm of gradient values; double fnew; double fold; double gold2; double c; double fdiff; double normdiff; // classical initial value for line-search step double t = 1.0; // Set gradient g at the size of the optimization problem search direction int sz = lineSearch_.searchDirection.Count; Vector g = new Vector(sz); Vector d = new Vector(sz); Vector sddiff = new Vector(sz); // Initialize cost function, gradient g and search direction P.setFunctionValue(P.valueAndGradient(g, x_)); P.setGradientNormValue(Vector.DotProduct(g, g)); lineSearch_.searchDirection = g * -1.0; // Loop over iterations do { // Linesearch t = lineSearch_.value(P, ref ecType, endCriteria, t); // don't throw: it can fail just because maxIterations exceeded //QL_REQUIRE(lineSearch_->succeed(), "line-search failed!"); if (lineSearch_.succeed()) { // Updates d = lineSearch_.searchDirection; // New point x_ = lineSearch_.lastX(); // New function value fold = P.functionValue(); P.setFunctionValue(lineSearch_.lastFunctionValue()); // New gradient and search direction vectors g = lineSearch_.lastGradient(); // orthogonalization coef gold2 = P.gradientNormValue(); P.setGradientNormValue(lineSearch_.lastGradientNorm2()); c = P.gradientNormValue() / gold2; // conjugate gradient search direction sddiff = ((g*-1.0) + c * d) - lineSearch_.searchDirection; normdiff = Math.Sqrt(Vector.DotProduct(sddiff, sddiff)); lineSearch_.searchDirection = (g*-1.0) + c * d; // Now compute accuracy and check end criteria // Numerical Recipes exit strategy on fx (see NR in C++, p.423) fnew = P.functionValue(); fdiff = 2.0 *Math.Abs(fnew-fold) / (Math.Abs(fnew) + Math.Abs(fold) + Double.Epsilon); if (fdiff < ftol || endCriteria.checkMaxIterations(iterationNumber_, ref ecType)) { endCriteria.checkStationaryFunctionValue(0.0, 0.0, ref maxStationaryStateIterations_, ref ecType); endCriteria.checkMaxIterations(iterationNumber_, ref ecType); return ecType; } //done = endCriteria(iterationNumber_, // stationaryStateIterationNumber_, // true, //FIXME: it should be in the problem // fold, // std::sqrt(gold2), // P.functionValue(), // std::sqrt(P.gradientNormValue()), // ecType); P.setCurrentValue(x_); // update problem current value ++iterationNumber_; // Increase iteration number } else { done =true; } } while (!done); P.setCurrentValue(x_); return ecType; }
//! solve the optimization problem P public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria) { // Initializations double ftol = endCriteria.functionEpsilon(); int maxStationaryStateIterations_ = endCriteria.maxStationaryStateIterations(); EndCriteria.Type ecType = EndCriteria.Type.None; // reset end criteria P.reset(); // reset problem Vector x_ = P.currentValue(); // store the starting point int iterationNumber_ = 0; // stationaryStateIterationNumber_=0 lineSearch_.searchDirection = new Vector(x_.Count); // dimension line search bool done = false; // function and squared norm of gradient values; double fnew; double fold; double gold2; double c; double fdiff; double normdiff; // classical initial value for line-search step double t = 1.0; // Set gradient g at the size of the optimization problem search direction int sz = lineSearch_.searchDirection.Count; Vector g = new Vector(sz); Vector d = new Vector(sz); Vector sddiff = new Vector(sz); // Initialize cost function, gradient g and search direction P.setFunctionValue(P.valueAndGradient(g, x_)); P.setGradientNormValue(Vector.DotProduct(g, g)); lineSearch_.searchDirection = g * -1.0; // Loop over iterations do { // Linesearch t = lineSearch_.value(P, ref ecType, endCriteria, t); // don't throw: it can fail just because maxIterations exceeded //QL_REQUIRE(lineSearch_->succeed(), "line-search failed!"); if (lineSearch_.succeed()) { // Updates d = lineSearch_.searchDirection; // New point x_ = lineSearch_.lastX(); // New function value fold = P.functionValue(); P.setFunctionValue(lineSearch_.lastFunctionValue()); // New gradient and search direction vectors g = lineSearch_.lastGradient(); // orthogonalization coef gold2 = P.gradientNormValue(); P.setGradientNormValue(lineSearch_.lastGradientNorm2()); c = P.gradientNormValue() / gold2; // conjugate gradient search direction sddiff = ((g * -1.0) + c * d) - lineSearch_.searchDirection; normdiff = Math.Sqrt(Vector.DotProduct(sddiff, sddiff)); lineSearch_.searchDirection = (g * -1.0) + c * d; // Now compute accuracy and check end criteria // Numerical Recipes exit strategy on fx (see NR in C++, p.423) fnew = P.functionValue(); fdiff = 2.0 * Math.Abs(fnew - fold) / (Math.Abs(fnew) + Math.Abs(fold) + Double.Epsilon); if (fdiff < ftol || endCriteria.checkMaxIterations(iterationNumber_, ref ecType)) { endCriteria.checkStationaryFunctionValue(0.0, 0.0, ref maxStationaryStateIterations_, ref ecType); endCriteria.checkMaxIterations(iterationNumber_, ref ecType); return(ecType); } //done = endCriteria(iterationNumber_, // stationaryStateIterationNumber_, // true, //FIXME: it should be in the problem // fold, // std::sqrt(gold2), // P.functionValue(), // std::sqrt(P.gradientNormValue()), // ecType); P.setCurrentValue(x_); // update problem current value ++iterationNumber_; // Increase iteration number } else { done = true; } } while (!done); P.setCurrentValue(x_); return(ecType); }
public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria) { // Initializations double ftol = endCriteria.functionEpsilon(); int maxStationaryStateIterations_ = endCriteria.maxStationaryStateIterations(); EndCriteria.Type ecType = EndCriteria.Type.None; // reset end criteria P.reset(); // reset problem Vector x_ = P.currentValue(); // store the starting point int iterationNumber_ = 0; // dimension line search lineSearch_.searchDirection = new Vector(x_.size()); bool done = false; // function and squared norm of gradient values double fnew, fold, gold2; double fdiff; // classical initial value for line-search step double t = 1.0; // Set gradient g at the size of the optimization problem // search direction int sz = lineSearch_.searchDirection.size(); Vector prevGradient = new Vector(sz), d = new Vector(sz), sddiff = new Vector(sz), direction = new Vector(sz); // Initialize cost function, gradient prevGradient and search direction P.setFunctionValue(P.valueAndGradient(prevGradient, x_)); P.setGradientNormValue(Vector.DotProduct(prevGradient, prevGradient)); lineSearch_.searchDirection = prevGradient * -1; bool first_time = true; // Loop over iterations do { // Linesearch if (!first_time) { prevGradient = lineSearch_.lastGradient(); } t = (lineSearch_.value(P, ref ecType, endCriteria, t)); // don't throw: it can fail just because maxIterations exceeded if (lineSearch_.succeed()) { // Updates // New point x_ = lineSearch_.lastX(); // New function value fold = P.functionValue(); P.setFunctionValue(lineSearch_.lastFunctionValue()); // New gradient and search direction vectors // orthogonalization coef gold2 = P.gradientNormValue(); P.setGradientNormValue(lineSearch_.lastGradientNorm2()); // conjugate gradient search direction direction = getUpdatedDirection(P, gold2, prevGradient); sddiff = direction - lineSearch_.searchDirection; lineSearch_.searchDirection = direction; // Now compute accuracy and check end criteria // Numerical Recipes exit strategy on fx (see NR in C++, p.423) fnew = P.functionValue(); fdiff = 2.0 * Math.Abs(fnew - fold) / (Math.Abs(fnew) + Math.Abs(fold) + Const.QL_EPSILON); if (fdiff < ftol || endCriteria.checkMaxIterations(iterationNumber_, ref ecType)) { endCriteria.checkStationaryFunctionValue(0.0, 0.0, ref maxStationaryStateIterations_, ref ecType); endCriteria.checkMaxIterations(iterationNumber_, ref ecType); return(ecType); } P.setCurrentValue(x_); // update problem current value ++iterationNumber_; // Increase iteration number first_time = false; } else { done = true; } }while (!done); P.setCurrentValue(x_); return(ecType); }