Exemple #1
0
        private void updateAlphaVec()
        {
            // Function calculates the alpha vector with given
            // fixed pillars+values

            // Write Matrix M
            double tmp = 0.0;

            for (int rowIt = 0; rowIt < xSize_; ++rowIt)
            {
                yVec_[rowIt] = this.yBegin_[rowIt];
                tmp          = 1.0 / gammaFunc(this.xBegin_[rowIt]);

                for (int colIt = 0; colIt < xSize_; ++colIt)
                {
                    M_[rowIt, colIt] = kernelAbs(this.xBegin_[rowIt],
                                                 this.xBegin_[colIt]) * tmp;
                }
            }

            // Solve y=M*\alpha for \alpha
            alphaVec_ = MatrixUtilities.qrSolve(M_, yVec_);

            // check if inversion worked up to a reasonable precision.
            // I've chosen not to check determinant(M_)!=0 before solving
            Vector test    = M_ * alphaVec_;
            Vector diffVec = Vector.Abs((M_ * alphaVec_) - yVec_);

            for (int i = 0; i < diffVec.size(); ++i)
            {
                Utils.QL_REQUIRE(diffVec[i] < invPrec_, () =>
                                 "Inversion failed in 1d kernel interpolation");
            }
        }
        private void updateAlphaVec()
        {
            // Function calculates the alpha vector with given
            // fixed pillars+values

            Vector Xk = new Vector(2), Xn = new Vector(2);

            int    rowCnt = 0, colCnt = 0;
            double tmpVar = 0.0;

            // write y-vector and M-Matrix
            for (int j = 0; j < ySize_; ++j)
            {
                for (int i = 0; i < xSize_; ++i)
                {
                    yVec_[rowCnt] = this.zData_[i, j];
                    // calculate X_k
                    Xk[0] = this.xBegin_[i];
                    Xk[1] = this.yBegin_[j];

                    tmpVar = 1 / gammaFunc(Xk);
                    colCnt = 0;

                    for (int jM = 0; jM < ySize_; ++jM)
                    {
                        for (int iM = 0; iM < xSize_; ++iM)
                        {
                            Xn[0] = this.xBegin_[iM];
                            Xn[1] = this.yBegin_[jM];
                            M_[rowCnt, colCnt] = kernelAbs(Xk, Xn) * tmpVar;
                            colCnt++; // increase column counter
                        }// end iM
                    }// end jM
                    rowCnt++; // increase row counter
                } // end i
            }// end j

            alphaVec_ = MatrixUtilities.qrSolve(M_, yVec_);

            // check if inversion worked up to a reasonable precision.
            // I've chosen not to check determinant(M_)!=0 before solving

            Vector diffVec = Vector.Abs(M_ * alphaVec_ - yVec_);

            for (int i = 0; i < diffVec.size(); ++i)
            {
                Utils.QL_REQUIRE(diffVec[i] < invPrec_, () =>
                                 "inversion failed in 2d kernel interpolation");
            }
        }
Exemple #3
0
        //! QR Solve

        /*! This implementation is based on MINPACK
         *  (<http://www.netlib.org/minpack>,
         *  <http://www.netlib.org/cephes/linalg.tgz>)
         *
         *  Given an m by n matrix A, an n by n diagonal matrix d,
         *  and an m-vector b, the problem is to determine an x which
         *  solves the system
         *
         *  A*x = b ,     d*x = 0 ,
         *
         *  in the least squares sense.
         *
         *  d is an input array of length n which must contain the
         *  diagonal elements of the matrix d.
         *
         *  See lmdiff.cpp for further details.
         */
        public static Vector qrSolve(Matrix a, Vector b, bool pivot = true, Vector d = null)
        {
            int m = a.rows();
            int n = a.columns();

            if (d == null)
            {
                d = new Vector();
            }
            Utils.QL_REQUIRE(b.Count == m, () => "dimensions of A and b don't match");
            Utils.QL_REQUIRE(d.Count == n || d.empty(), () => "dimensions of A and d don't match");

            Matrix q = new Matrix(m, n), r = new Matrix(n, n);

            List <int> lipvt = MatrixUtilities.qrDecomposition(a, ref q, ref r, pivot);
            List <int> ipvt  = new List <int>(n);

            ipvt = lipvt;

            //std::copy(lipvt.begin(), lipvt.end(), ipvt.get());

            Matrix aT = Matrix.transpose(a);
            Matrix rT = Matrix.transpose(r);

            Vector sdiag = new Vector(n);
            Vector wa    = new Vector(n);

            Vector ld = new Vector(n, 0.0);

            if (!d.empty())
            {
                ld = d;
                //std::copy(d.begin(), d.end(), ld.begin());
            }
            Vector x   = new Vector(n);
            Vector qtb = Matrix.transpose(q) * b;

            MINPACK.qrsolv(n, rT, n, ipvt, ld, qtb, x, sdiag, wa);

            return(x);
        }
Exemple #4
0
        //! Returns the pseudo square root of a real symmetric matrix

        /*! Given a matrix \f$ M \f$, the result \f$ S \f$ is defined
         *  as the matrix such that \f$ S S^T = M. \f$
         *  If the matrix is not positive semi definite, it can
         *  return an approximation of the pseudo square root
         *  using a (user selected) salvaging algorithm.
         *
         *  For more information see: "The most general methodology to create
         *  a valid correlation matrix for risk management and option pricing
         *  purposes", by R. Rebonato and P. Jдckel.
         *  The Journal of Risk, 2(2), Winter 1999/2000
         *  http://www.rebonato.com/correlationmatrix.pdf
         *
         *  Revised and extended in "Monte Carlo Methods in Finance",
         *  by Peter Jдckel, Chapter 6.
         *
         *  \pre the given matrix must be symmetric.
         *
         *  \relates Matrix
         *
         *  \warning Higham algorithm only works for correlation matrices.
         *
         *  \test
         *  - the correctness of the results is tested by reproducing
         *    known good data.
         *  - the correctness of the results is tested by checking
         *    returned values against numerical calculations.
         */
        public static Matrix pseudoSqrt(Matrix matrix, SalvagingAlgorithm sa)
        {
            int size = matrix.rows();

            #if QL_EXTRA_SAFETY_CHECKS
            checkSymmetry(matrix);
            #else
            if (size != matrix.columns())
            {
                throw new Exception("non square matrix: " + size + " rows, " + matrix.columns() + " columns");
            }
            #endif

            // spectral (a.k.a Principal Component) analysis
            SymmetricSchurDecomposition jd = new SymmetricSchurDecomposition(matrix);
            Matrix diagonal = new Matrix(size, size, 0.0);

            // salvaging algorithm
            Matrix result = new Matrix(size, size);
            bool   negative;
            switch (sa)
            {
            case SalvagingAlgorithm.None:
                // eigenvalues are sorted in decreasing order
                if (!(jd.eigenvalues()[size - 1] >= -1e-16))
                {
                    throw new Exception("negative eigenvalue(s) (" + jd.eigenvalues()[size - 1] + ")");
                }
                result = MatrixUtilities.CholeskyDecomposition(matrix, true);
                break;

            case SalvagingAlgorithm.Spectral:
                // negative eigenvalues set to zero
                for (int i = 0; i < size; i++)
                {
                    diagonal[i, i] = Math.Sqrt(Math.Max(jd.eigenvalues()[i], 0.0));
                }

                result = jd.eigenvectors() * diagonal;
                normalizePseudoRoot(matrix, result);
                break;

            case SalvagingAlgorithm.Hypersphere:
                // negative eigenvalues set to zero
                negative = false;
                for (int i = 0; i < size; ++i)
                {
                    diagonal[i, i] = Math.Sqrt(Math.Max(jd.eigenvalues()[i], 0.0));
                    if (jd.eigenvalues()[i] < 0.0)
                    {
                        negative = true;
                    }
                }
                result = jd.eigenvectors() * diagonal;
                normalizePseudoRoot(matrix, result);

                if (negative)
                {
                    result = hypersphereOptimize(matrix, result, false);
                }
                break;

            case SalvagingAlgorithm.LowerDiagonal:
                // negative eigenvalues set to zero
                negative = false;
                for (int i = 0; i < size; ++i)
                {
                    diagonal[i, i] = Math.Sqrt(Math.Max(jd.eigenvalues()[i], 0.0));
                    if (jd.eigenvalues()[i] < 0.0)
                    {
                        negative = true;
                    }
                }
                result = jd.eigenvectors() * diagonal;

                normalizePseudoRoot(matrix, result);

                if (negative)
                {
                    result = hypersphereOptimize(matrix, result, true);
                }
                break;

            case SalvagingAlgorithm.Higham:
                int    maxIterations = 40;
                double tol           = 1e-6;
                result = highamImplementation(matrix, maxIterations, tol);
                result = MatrixUtilities.CholeskyDecomposition(result, true);
                break;

            default:
                throw new Exception("unknown salvaging algorithm");
            }

            return(result);
        }
Exemple #5
0
        // Optimization function for hypersphere and lower-diagonal algorithm
        private static Matrix hypersphereOptimize(Matrix targetMatrix, Matrix currentRoot, bool lowerDiagonal)
        {
            int    i, j, k, size = targetMatrix.rows();
            Matrix result   = new Matrix(currentRoot);
            Vector variance = new Vector(size);

            for (i = 0; i < size; i++)
            {
                variance[i] = Math.Sqrt(targetMatrix[i, i]);
            }
            if (lowerDiagonal)
            {
                Matrix approxMatrix = result * Matrix.transpose(result);
                result = MatrixUtilities.CholeskyDecomposition(approxMatrix, true);
                for (i = 0; i < size; i++)
                {
                    for (j = 0; j < size; j++)
                    {
                        result[i, j] /= Math.Sqrt(approxMatrix[i, i]);
                    }
                }
            }
            else
            {
                for (i = 0; i < size; i++)
                {
                    for (j = 0; j < size; j++)
                    {
                        result[i, j] /= variance[i];
                    }
                }
            }

            ConjugateGradient       optimize     = new ConjugateGradient();
            EndCriteria             endCriteria  = new EndCriteria(100, 10, 1e-8, 1e-8, 1e-8);
            HypersphereCostFunction costFunction = new HypersphereCostFunction(targetMatrix, variance, lowerDiagonal);
            NoConstraint            constraint   = new NoConstraint();

            // hypersphere vector optimization

            if (lowerDiagonal)
            {
                Vector       theta = new Vector(size * (size - 1) / 2);
                const double eps   = 1e-16;
                for (i = 1; i < size; i++)
                {
                    for (j = 0; j < i; j++)
                    {
                        theta[i * (i - 1) / 2 + j] = result[i, j];
                        if (theta[i * (i - 1) / 2 + j] > 1 - eps)
                        {
                            theta[i * (i - 1) / 2 + j] = 1 - eps;
                        }
                        if (theta[i * (i - 1) / 2 + j] < -1 + eps)
                        {
                            theta[i * (i - 1) / 2 + j] = -1 + eps;
                        }
                        for (k = 0; k < j; k++)
                        {
                            theta[i * (i - 1) / 2 + j] /= Math.Sin(theta[i * (i - 1) / 2 + k]);
                            if (theta[i * (i - 1) / 2 + j] > 1 - eps)
                            {
                                theta[i * (i - 1) / 2 + j] = 1 - eps;
                            }
                            if (theta[i * (i - 1) / 2 + j] < -1 + eps)
                            {
                                theta[i * (i - 1) / 2 + j] = -1 + eps;
                            }
                        }
                        theta[i * (i - 1) / 2 + j] = Math.Acos(theta[i * (i - 1) / 2 + j]);
                        if (j == i - 1)
                        {
                            if (result[i, i] < 0)
                            {
                                theta[i * (i - 1) / 2 + j] = -theta[i * (i - 1) / 2 + j];
                            }
                        }
                    }
                }
                Problem p = new Problem(costFunction, constraint, theta);
                optimize.minimize(p, endCriteria);
                theta = p.currentValue();
                result.fill(1);
                for (i = 0; i < size; i++)
                {
                    for (k = 0; k < size; k++)
                    {
                        if (k > i)
                        {
                            result[i, k] = 0;
                        }
                        else
                        {
                            for (j = 0; j <= k; j++)
                            {
                                if (j == k && k != i)
                                {
                                    result[i, k] *= Math.Cos(theta[i * (i - 1) / 2 + j]);
                                }
                                else if (j != i)
                                {
                                    result[i, k] *= Math.Sin(theta[i * (i - 1) / 2 + j]);
                                }
                            }
                        }
                    }
                }
            }
            else
            {
                Vector       theta = new Vector(size * (size - 1));
                const double eps   = 1e-16;
                for (i = 0; i < size; i++)
                {
                    for (j = 0; j < size - 1; j++)
                    {
                        theta[j * size + i] = result[i, j];
                        if (theta[j * size + i] > 1 - eps)
                        {
                            theta[j * size + i] = 1 - eps;
                        }
                        if (theta[j * size + i] < -1 + eps)
                        {
                            theta[j * size + i] = -1 + eps;
                        }
                        for (k = 0; k < j; k++)
                        {
                            theta[j * size + i] /= Math.Sin(theta[k * size + i]);
                            if (theta[j * size + i] > 1 - eps)
                            {
                                theta[j * size + i] = 1 - eps;
                            }
                            if (theta[j * size + i] < -1 + eps)
                            {
                                theta[j * size + i] = -1 + eps;
                            }
                        }
                        theta[j * size + i] = Math.Acos(theta[j * size + i]);
                        if (j == size - 2)
                        {
                            if (result[i, j + 1] < 0)
                            {
                                theta[j * size + i] = -theta[j * size + i];
                            }
                        }
                    }
                }
                Problem p = new Problem(costFunction, constraint, theta);
                optimize.minimize(p, endCriteria);
                theta = p.currentValue();
                result.fill(1);
                for (i = 0; i < size; i++)
                {
                    for (k = 0; k < size; k++)
                    {
                        for (j = 0; j <= k; j++)
                        {
                            if (j == k && k != size - 1)
                            {
                                result[i, k] *= Math.Cos(theta[j * size + i]);
                            }
                            else if (j != size - 1)
                            {
                                result[i, k] *= Math.Sin(theta[j * size + i]);
                            }
                        }
                    }
                }
            }

            for (i = 0; i < size; i++)
            {
                for (j = 0; j < size; j++)
                {
                    result[i, j] *= variance[i];
                }
            }
            return(result);
        }