public double integrate(double a, double b, ConundrumIntegrand integrand) { double result = .0; // we use the non adaptive algorithm only for semi infinite interval if (a > 0) { // we estimate the actual boudary by testing integrand values double upperBoundary = 2 * a; while (integrand.value(upperBoundary) > precision_) { upperBoundary *= 2.0; } // sometimes b < a because of a wrong estimation of b based on stdev if (b > a) { upperBoundary = Math.Min(upperBoundary, b); } GaussKronrodNonAdaptive gaussKronrodNonAdaptive = new GaussKronrodNonAdaptive(precision_, 1000000, 1.0); // if the integration intervall is wide enough we use the // following change variable x -> a + (b-a)*(t/(a-b))^3 upperBoundary = Math.Max(a, Math.Min(upperBoundary, hardUpperLimit_)); if (upperBoundary > 2 * a) { VariableChange variableChange = new VariableChange(integrand.value, a, upperBoundary, 3); result = gaussKronrodNonAdaptive.value(variableChange.value, .0, 1.0); } else { result = gaussKronrodNonAdaptive.value(integrand.value, a, upperBoundary); } // if the expected precision has not been reached we use the old algorithm if (!gaussKronrodNonAdaptive.integrationSuccess()) { GaussKronrodAdaptive integrator = new GaussKronrodAdaptive(precision_, 100000); b = Math.Max(a, Math.Min(b, hardUpperLimit_)); result = integrator.value(integrand.value, a, b); } } // if a < b we use the old algorithm else { b = Math.Max(a, Math.Min(b, hardUpperLimit_)); GaussKronrodAdaptive integrator = new GaussKronrodAdaptive(precision_, 100000); result = integrator.value(integrand.value, a, b); } return(result); }
public double integratedCovariance(int i, int j, double t, Vector x) { if (corrModel_.isTimeIndependent()) { try { // if all objects support these methods // thats by far the fastest way to get the // integrated covariance return(corrModel_.correlation(i, j, 0.0, x) * volaModel_.integratedVariance(j, i, t, x)); //verifier la methode integratedVariance, qui bdoit etre implémenté } catch (System.Exception) { // okay proceed with the // slow numerical integration routine } } try { Utils.QL_REQUIRE(x.empty() != false, () => "can not handle given x here"); } catch //OK x empty { } double tmp = 0.0; VarProxy_Helper helper = new VarProxy_Helper(this, i, j); GaussKronrodAdaptive integrator = new GaussKronrodAdaptive(1e-10, 10000); for (int k = 0; k < 64; ++k) { tmp += integrator.value(helper.value, k * t / 64.0, (k + 1) * t / 64.0); } return(tmp); }