static float TraverseMaxLength(TreeBranch branch)
        {
            float max = 0f;

            branch.Children.ForEach(c => {
                max = Mathf.Max(max, TraverseMaxLength(c));
            });
            return(branch.Length + max);
        }
 static void Traverse(TreeBranch from, Action <TreeBranch> action)
 {
     if (from.Children.Count > 0)
     {
         from.Children.ForEach(child => {
             Traverse(child, action);
         });
     }
     action(from);
 }
Exemple #3
0
 void DrawSegmentGizmos(TreeBranch branch, Color color)
 {
     for (int i = 0, n = branch.Segments.Count - 1; i < n; i++)
     {
         var s0 = branch.Segments[i];
         var s1 = branch.Segments[i + 1];
         Gizmos.color = color;
         Gizmos.DrawLine(s0.Position, s1.Position);
     }
 }
Exemple #4
0
        protected TreeBranch(int generation, Vector3 from, Vector3 tangent, Vector3 normal, Vector3 binormal, float length, float radius, float offset, TreeData data)
        {
            this.generation = generation;

            this.fromRadius = radius;
            this.toRadius   = (generation == 0) ? 0f : radius *data.RadiusAttenuation;

            this.from = from;

            var rotation = Quaternion.AngleAxis(data.GetRandomAngle(), normal) * Quaternion.AngleAxis(data.GetRandomAngle(), binormal);

            this.to     = from + rotation * tangent * length;
            this.length = length;
            this.offset = offset;

            segments = BuildSegments(data, radius, normal, binormal);

            children = new List <TreeBranch>();
            if (generation > 0)
            {
                int branches = data.GetRandomBranches();
                for (int i = 0; i < branches; i++)
                {
                    // 一番初めの枝は一続きの枝にする
                    bool sequence = (i == 0);

                    int index = sequence ? segments.Count - 1 : data.Range(1, segments.Count - 1);
                    var ratio = 1f * index / (segments.Count - 1);

                    var segment = segments[index];
                    var nt      = segment.Frame.Tangent;
                    var nn      = segment.Frame.Normal;
                    var nb      = segment.Frame.Binormal;

                    var child = new TreeBranch(
                        this.generation - 1,
                        segment.Position,
                        nt,
                        nn,
                        nb,
                        length * Mathf.Lerp(1f, data.LengthAttenuation, ratio),
                        radius * Mathf.Lerp(1f, data.RadiusAttenuation, ratio),
                        offset + length,
                        data
                        );

                    children.Add(child);
                }
            }
        }
        protected TreeBranch(List <TreeBranch> branches, int generation, int generations, Vector3 from, Vector3 tangent, Vector3 normal, Vector3 binormal, float length, float radius, float offset, TreeData data)
        {
            this.generation = generation;

            this.fromRadius = radius;
            this.toRadius   = (generation == 0) ? 0f : radius *data.radiusAttenuation;

            this.from = from;

            var scale    = Mathf.Lerp(1f, data.growthAngleScale, 1f - 1f * generation / generations);
            var rotation = Quaternion.AngleAxis(scale * data.GetRandomGrowthAngle(), normal) * Quaternion.AngleAxis(scale * data.GetRandomGrowthAngle(), binormal);

            this.to = from + rotation * tangent * length;

            this.length = length;
            this.offset = offset;

            segments = BuildSegments(data, fromRadius, toRadius, normal, binormal);

            branches.Add(this);

            children = new List <TreeBranch>();
            if (generation > 0)
            {
                int count = data.GetRandomBranches();
                for (int i = 0; i < count; i++)
                {
                    float ratio;
                    if (count == 1)
                    {
                        // for zero division
                        ratio = 1f;
                    }
                    else
                    {
                        ratio = Mathf.Lerp(0.5f, 1f, (1f * i) / (count - 1));
                    }

                    var index   = Mathf.FloorToInt(ratio * (segments.Count - 1));
                    var segment = segments[index];

                    Vector3 nt, nn, nb;
                    if (ratio >= 1f)
                    {
                        // sequence branch
                        nt = segment.Frame.Tangent;
                        nn = segment.Frame.Normal;
                        nb = segment.Frame.Binormal;
                    }
                    else
                    {
                        var phi = Quaternion.AngleAxis(i * 90f, tangent);
                        // var psi = Quaternion.AngleAxis(data.branchingAngle, normal) * Quaternion.AngleAxis(data.branchingAngle, binormal);
                        var psi = Quaternion.AngleAxis(data.branchingAngle, normal);
                        var rot = phi * psi;
                        nt = rot * tangent;
                        nn = rot * normal;
                        nb = rot * binormal;
                    }

                    var child = new TreeBranch(
                        branches,
                        this.generation - 1,
                        generations,
                        segment.Position,
                        nt,
                        nn,
                        nb,
                        length * Mathf.Lerp(1f, data.lengthAttenuation, ratio),
                        radius * Mathf.Lerp(1f, data.radiusAttenuation, ratio),
                        offset + length,
                        data
                        );

                    children.Add(child);
                }
            }
        }
        public static Mesh Build(TreeData data, int generations, float length, float radius)
        {
            data.Setup();

            var root = new TreeBranch(
                generations,
                length,
                radius,
                data
                );

            var vertices  = new List <Vector3>();
            var normals   = new List <Vector3>();
            var tangents  = new List <Vector4>();
            var uvs       = new List <Vector2>();
            var triangles = new List <int>();

            float maxLength = TraverseMaxLength(root);

            Traverse(root, (branch) => {
                var offset = vertices.Count;

                var vOffset = branch.Offset / maxLength;
                var vLength = branch.Length / maxLength;

                for (int i = 0, n = branch.Segments.Count; i < n; i++)
                {
                    var t = 1f * i / (n - 1);
                    var v = vOffset + vLength * t;

                    var segment = branch.Segments[i];
                    var N       = segment.Frame.Normal;
                    var B       = segment.Frame.Binormal;
                    for (int j = 0; j <= data.radialSegments; j++)
                    {
                        // 0.0 ~ 2π
                        var u     = 1f * j / data.radialSegments;
                        float rad = u * PI2;

                        float cos  = Mathf.Cos(rad), sin = Mathf.Sin(rad);
                        var normal = (cos * N + sin * B).normalized;
                        vertices.Add(segment.Position + segment.Radius * normal);
                        normals.Add(normal);

                        var tangent = segment.Frame.Tangent;
                        tangents.Add(new Vector4(tangent.x, tangent.y, tangent.z, 0f));

                        uvs.Add(new Vector2(u, v));
                    }
                }

                for (int j = 1; j <= data.heightSegments; j++)
                {
                    for (int i = 1; i <= data.radialSegments; i++)
                    {
                        int a = (data.radialSegments + 1) * (j - 1) + (i - 1);
                        int b = (data.radialSegments + 1) * j + (i - 1);
                        int c = (data.radialSegments + 1) * j + i;
                        int d = (data.radialSegments + 1) * (j - 1) + i;

                        a += offset;
                        b += offset;
                        c += offset;
                        d += offset;

                        triangles.Add(a); triangles.Add(d); triangles.Add(b);
                        triangles.Add(b); triangles.Add(d); triangles.Add(c);
                    }
                }
            });

            var mesh = new Mesh();

            mesh.vertices  = vertices.ToArray();
            mesh.normals   = normals.ToArray();
            mesh.tangents  = tangents.ToArray();
            mesh.uv        = uvs.ToArray();
            mesh.triangles = triangles.ToArray();
            return(mesh);
        }
        public static Mesh Build(TreeData data, int generations, float length, float radius)
        {
            data.Setup();

            var root = new TreeBranch(
                generations,
                length,
                radius,
                data
                );

            var vertices  = new List <Vector3>();
            var normals   = new List <Vector3>();
            var tangents  = new List <Vector4>();
            var uvs       = new List <Vector2>();
            var triangles = new List <int>();

            // 木の全長を取得
            // 枝の長さを全長で割ることで、uv座標の高さ(uv.y)が
            // 根元から枝先に至るまで[0.0 ~ 1.0]で変化するように設定する
            float maxLength = TraverseMaxLength(root);

            // 再帰的に全ての枝を辿り、一つ一つの枝に対応するMeshを生成する
            Traverse(root, (branch) => {
                var offset = vertices.Count;

                var vOffset = branch.Offset / maxLength;
                var vLength = branch.Length / maxLength;

                // 一本の枝から頂点データを生成する
                for (int i = 0, n = branch.Segments.Count; i < n; i++)
                {
                    var t = 1f * i / (n - 1);
                    var v = vOffset + vLength * t;

                    var segment = branch.Segments[i];
                    var N       = segment.Frame.Normal;
                    var B       = segment.Frame.Binormal;
                    for (int j = 0; j <= data.radialSegments; j++)
                    {
                        // 0.0 ~ 2π
                        var u     = 1f * j / data.radialSegments;
                        float rad = u * PI2;

                        float cos  = Mathf.Cos(rad), sin = Mathf.Sin(rad);
                        var normal = (cos * N + sin * B).normalized;
                        vertices.Add(segment.Position + segment.Radius * normal);
                        normals.Add(normal);

                        var tangent = segment.Frame.Tangent;
                        tangents.Add(new Vector4(tangent.x, tangent.y, tangent.z, 0f));

                        uvs.Add(new Vector2(u, v));
                    }
                }

                // 一本の枝の三角形を構築する
                for (int j = 1; j <= data.heightSegments; j++)
                {
                    for (int i = 1; i <= data.radialSegments; i++)
                    {
                        int a = (data.radialSegments + 1) * (j - 1) + (i - 1);
                        int b = (data.radialSegments + 1) * j + (i - 1);
                        int c = (data.radialSegments + 1) * j + i;
                        int d = (data.radialSegments + 1) * (j - 1) + i;

                        a += offset;
                        b += offset;
                        c += offset;
                        d += offset;

                        triangles.Add(a); triangles.Add(d); triangles.Add(b);
                        triangles.Add(b); triangles.Add(d); triangles.Add(c);
                    }
                }
            });

            var mesh = new Mesh();

            mesh.vertices  = vertices.ToArray();
            mesh.normals   = normals.ToArray();
            mesh.tangents  = tangents.ToArray();
            mesh.uv        = uvs.ToArray();
            mesh.triangles = triangles.ToArray();
            mesh.RecalculateBounds();

            return(mesh);
        }
        protected TreeBranch(int generation, int generations, Vector3 from, Vector3 tangent, Vector3 normal, Vector3 binormal, float length, float radius, float offset, TreeData data)
        {
            this.generation = generation;

            this.fromRadius = radius;

            // 枝先である場合は先端の太さが0になる
            this.toRadius = (generation == 0) ? 0f : radius *data.radiusAttenuation;

            this.from = from;

            // 枝先ほど分岐する角度が大きくなる
            var scale = Mathf.Lerp(1f, data.growthAngleScale, 1f - 1f * generation / generations);

            // normal方向の回転
            var qn = Quaternion.AngleAxis(scale * data.GetRandomGrowthAngle(), normal);

            // binormal方向の回転
            var qb = Quaternion.AngleAxis(scale * data.GetRandomGrowthAngle(), binormal);

            // 枝先が向いているtangent方向にqn * qbの回転をかけつつ、枝先の位置を決める
            this.to = from + (qn * qb) * tangent * length;

            this.length = length;
            this.offset = offset;

            // モデル生成に必要な節を構築
            segments = BuildSegments(data, fromRadius, toRadius, normal, binormal);

            children = new List <TreeBranch>();
            if (generation > 0)
            {
                // 分岐する数を取得
                int count = data.GetRandomBranches();
                for (int i = 0; i < count; i++)
                {
                    float ratio; // [0.0 ~ 1.0]
                    if (count == 1)
                    {
                        // 分岐数が1である場合(0除算を回避)
                        ratio = 1f;
                    }
                    else
                    {
                        ratio = Mathf.Lerp(0.5f, 1f, (1f * i) / (count - 1));
                    }

                    // 分岐元の節を取得
                    var index   = Mathf.FloorToInt(ratio * (segments.Count - 1));
                    var segment = segments[index];

                    // 分岐元の節が持つベクトルをTreeBranchに渡すことで滑らかな分岐を得る
                    Vector3 nt = segment.Frame.Tangent;
                    Vector3 nn = segment.Frame.Normal;
                    Vector3 nb = segment.Frame.Binormal;

                    var child = new TreeBranch(
                        this.generation - 1,
                        generations,
                        segment.Position,
                        nt,
                        nn,
                        nb,
                        length * Mathf.Lerp(1f, data.lengthAttenuation, ratio),
                        radius * Mathf.Lerp(1f, data.radiusAttenuation, ratio),
                        offset + length,
                        data
                        );

                    children.Add(child);
                }
            }
        }