public void MapTriangleToNodes(Triangle t) { for (int i = 0; i < 3; i++) { if (t.GetNeighbor(i) == null) { Node n = Front.LocatePoint(t.PointCW(t.Points[i])); if (n != null) { n.Triangle = t; } } } }
private TriPoint NextFlipPoint(TriPoint ep, TriPoint eq, Triangle ot, TriPoint op) { Winding o2d = TriUtil.Orient2d(eq, op, ep); if (o2d == Winding.CW) { // Right return(ot.PointCCW(op)); } else if (o2d == Winding.CCW) { // Left return(ot.PointCW(op)); } throw new NotSupportedException("[Unsupported] Opposing point on constrained edge"); }
private void FlipEdgeEvent(SweepContext tcx, TriPoint ep, TriPoint eq, Triangle t, TriPoint p) { Triangle ot = t.NeighborAcross(p); TriPoint op = ot.OppositePoint(t, p); if (TriUtil.InScanArea(p, t.PointCCW(p), t.PointCW(p), op)) { // Lets rotate shared edge one vertex CW RotateTrianglePair(t, p, ot, op); tcx.MapTriangleToNodes(t); tcx.MapTriangleToNodes(ot); if (p == eq && op == ep) { if (eq == tcx.EdgeEvent.ConstrainedEdge.Q && ep == tcx.EdgeEvent.ConstrainedEdge.P) { t.MarkConstrainedEdge(ep, eq); ot.MarkConstrainedEdge(ep, eq); Legalize(tcx, t); Legalize(tcx, ot); } else { // XXX: I think one of the triangles should be legalized here? } } else { Winding o = TriUtil.Orient2d(eq, op, ep); t = NextFlipTriangle(tcx, o, t, ot, p, op); FlipEdgeEvent(tcx, ep, eq, t, p); } } else { TriPoint newP = NextFlipPoint(ep, eq, ot, op); FlipScanEdgeEvent(tcx, ep, eq, t, ot, newP); EdgeEvent(tcx, ep, eq, t, p); } }
private void FlipScanEdgeEvent(SweepContext tcx, TriPoint ep, TriPoint eq, Triangle flip_triangle, Triangle t, TriPoint p) { Triangle ot = t.NeighborAcross(p); TriPoint op = ot.OppositePoint(t, p); if (TriUtil.InScanArea(eq, flip_triangle.PointCCW(eq), flip_triangle.PointCW(eq), op)) { // flip with new edge op->eq FlipEdgeEvent(tcx, eq, op, ot, op); // TODO: Actually I just figured out that it should be possible to // improve this by getting the next ot and op before the the above // flip and continue the flipScanEdgeEvent here // set new ot and op here and loop back to inScanArea test // also need to set a new flip_triangle first // Turns out at first glance that this is somewhat complicated // so it will have to wait. } else { TriPoint newP = NextFlipPoint(ep, eq, ot, op); FlipScanEdgeEvent(tcx, ep, eq, flip_triangle, ot, newP); } }
public TriPoint OppositePoint(Triangle t, TriPoint p) { TriPoint cw = t.PointCW(p); return(PointCW(cw)); }
private void EdgeEvent(SweepContext tcx, TriPoint ep, TriPoint eq, Triangle triangle, TriPoint point) { if (IsEdgeSideOfTriangle(triangle, ep, eq)) { return; } TriPoint p1 = triangle.PointCCW(point); Winding o1 = TriUtil.Orient2d(eq, p1, ep); if (o1 == Winding.Collinear) { if (triangle.Contains(eq, p1)) { triangle.MarkConstrainedEdge(eq, p1); // We are modifying the constraint maybe it would be better to // not change the given constraint and just keep a variable for the new constraint tcx.EdgeEvent.ConstrainedEdge.Q = p1; triangle = triangle.NeighborAcross(point); EdgeEvent(tcx, ep, p1, triangle, p1); } else { throw new NotSupportedException("EdgeEvent - collinear points not supported"); } return; } TriPoint p2 = triangle.PointCW(point); Winding o2 = TriUtil.Orient2d(eq, p2, ep); if (o2 == Winding.Collinear) { if (triangle.Contains(eq, p2)) { triangle.MarkConstrainedEdge(eq, p2); // We are modifying the constraint maybe it would be better to // not change the given constraint and just keep a variable for the new constraint tcx.EdgeEvent.ConstrainedEdge.Q = p2; triangle = triangle.NeighborAcross(point); EdgeEvent(tcx, ep, p2, triangle, p2); } else { throw new NotSupportedException("EdgeEvent - collinear points not supported"); } return; } if (o1 == o2) { // Need to decide if we are rotating CW or CCW to get to a triangle // that will cross edge if (o1 == Winding.CW) { triangle = triangle.NeighborCCW(point); } else { triangle = triangle.NeighborCW(point); } EdgeEvent(tcx, ep, eq, triangle, point); } else { // This triangle crosses constraint so lets flippin start! FlipEdgeEvent(tcx, ep, eq, triangle, point); } }
private bool Legalize(SweepContext tcx, Triangle t) { // To legalize a triangle we start by finding if any of the three edges // violate the Delaunay condition for (int i = 0; i < 3; i++) { if (t.DelaunayEdge[i]) { continue; } Triangle ot = t.GetNeighbor(i); if (ot != null) { TriPoint p = t.Points[i]; TriPoint op = ot.OppositePoint(t, p); int oi = ot.Index(op); // If this is a Constrained Edge or a Delaunay Edge(only during recursive legalization) // then we should not try to legalize if (ot.ConstrainedEdge[oi] || ot.DelaunayEdge[oi]) { t.ConstrainedEdge[i] = ot.ConstrainedEdge[oi]; continue; } bool inside = Incircle(p, t.PointCCW(p), t.PointCW(p), op); if (inside) { // Lets mark this shared edge as Delaunay t.DelaunayEdge[i] = true; ot.DelaunayEdge[oi] = true; // Lets rotate shared edge one vertex CW to legalize it RotateTrianglePair(t, p, ot, op); // We now got one valid Delaunay Edge shared by two triangles // This gives us 4 new edges to check for Delaunay // Make sure that triangle to node mapping is done only one time for a specific triangle bool not_legalized = !Legalize(tcx, t); if (not_legalized) { tcx.MapTriangleToNodes(t); } not_legalized = !Legalize(tcx, ot); if (not_legalized) { tcx.MapTriangleToNodes(ot); } // Reset the Delaunay edges, since they only are valid Delaunay edges // until we add a new triangle or point. // XXX: need to think about this. Can these edges be tried after we // return to previous recursive level? t.DelaunayEdge[i] = false; ot.DelaunayEdge[oi] = false; // If triangle have been legalized no need to check the other edges since // the recursive legalization will handles those so we can end here. return(true); } } } return(false); }