Exemple #1
0
        //public static int ConvertColor(double opacity, ColorInt color)
        //{
        //    if (opacity < 0.0 || opacity > 1.0)
        //    {
        //        throw new ArgumentOutOfRangeException("opacity", "Opacity must be between 0.0 and 1.0");
        //    }
        //    color.A = (byte)(color.A * opacity);
        //    return ConvertColor(color);
        //}



        /// <summary>
        /// Fills the whole WriteableBitmap with a color.
        /// </summary>
        /// <param name="bmp">The WriteableBitmap.</param>
        /// <param name="color">The color used for filling.</param>
        public static void Clear(this BitmapBuffer bmp, ColorInt color)
        {
            int colr = color.ToPreMultAlphaColor();

            using (var context = bmp.GetBitmapContext())
            {
                int[] pixels = context.Pixels;
                int   w      = context.Width;
                int   h      = context.Height;
                int   len    = w * ARGB_SIZE;

                // Fill first line
                for (int x = 0; x < w; x++)
                {
                    pixels[x] = colr;
                }

                // Copy first line
                int blockHeight = 1;
                int y           = 1;
                while (y < h)
                {
                    BitmapContext.BlockCopy(context, 0, context, y * len, blockHeight * len);
                    y          += blockHeight;
                    blockHeight = Math.Min(2 * blockHeight, h - y);
                }
            }
        }
Exemple #2
0
 /// <summary>
 /// Sets the color of the pixel.
 /// For best performance this method should not be used in iterative real-time scenarios. Implement the code directly inside a loop.
 /// </summary>
 /// <param name="bmp">The WriteableBitmap.</param>
 /// <param name="x">The x coordinate (row).</param>
 /// <param name="y">The y coordinate (column).</param>
 /// <param name="color">The color.</param>
 public static void SetPixel(this BitmapBuffer bmp, int x, int y, ColorInt color)
 {
     using (var context = bmp.GetBitmapContext())
     {
         context.Pixels[y * context.Width + x] = color.ToPreMultAlphaColor();
     }
 }
Exemple #3
0
 /// <summary>
 /// Sets the color of the pixel using an extra alpha value and a precalculated index (faster).
 /// For best performance this method should not be used in iterative real-time scenarios. Implement the code directly inside a loop.
 /// </summary>
 /// <param name="bmp">The WriteableBitmap.</param>
 /// <param name="index">The coordinate index.</param>
 /// <param name="a">The alpha value of the color.</param>
 /// <param name="color">The color.</param>
 public static void SetPixeli(this BitmapBuffer bmp, int index, byte a, ColorInt color)
 {
     using (var context = bmp.GetBitmapContext())
     {
         context.Pixels[index] = color.ToPreMultAlphaColor();
     }
 }
Exemple #4
0
 /// <summary>
 /// Sets the color of the pixel including the alpha value.
 /// For best performance this method should not be used in iterative real-time scenarios. Implement the code directly inside a loop.
 /// </summary>
 /// <param name="bmp">The WriteableBitmap.</param>
 /// <param name="x">The x coordinate (row).</param>
 /// <param name="y">The y coordinate (column).</param>
 /// <param name="a">The alpha value of the color.</param>
 /// <param name="r">The red value of the color.</param>
 /// <param name="g">The green value of the color.</param>
 /// <param name="b">The blue value of the color.</param>
 public static void SetPixel(this BitmapBuffer bmp, int x, int y, byte a, byte r, byte g, byte b)
 {
     using (var context = bmp.GetBitmapContext())
     {
         context.Pixels[y * context.Width + x] = (a << 24) | (r << 16) | (g << 8) | b;
     }
 }
Exemple #5
0
 /// <summary>
 /// Sets the color of the pixel using a precalculated index (faster).
 /// For best performance this method should not be used in iterative real-time scenarios. Implement the code directly inside a loop.
 /// </summary>
 /// <param name="bmp">The WriteableBitmap.</param>
 /// <param name="index">The coordinate index.</param>
 /// <param name="color">The color.</param>
 public static void SetPixeli(this BitmapBuffer bmp, int index, int color)
 {
     using (var context = bmp.GetBitmapContext())
     {
         context.Pixels[index] = color;
     }
 }
        /// <summary>
        /// Creates a new inverted WriteableBitmap and returns it.
        /// </summary>
        /// <param name="bmp">The WriteableBitmap.</param>
        /// <returns>The new inverted WriteableBitmap.</returns>
        public static BitmapBuffer Invert(this BitmapBuffer bmp)
        {
            using (var srcContext = bmp.GetBitmapContext(ReadWriteMode.ReadOnly))
            {
                var result = BitmapBufferFactory.New(srcContext.Width, srcContext.Height);
                using (var resultContext = result.GetBitmapContext())
                {
                    int[] rp     = resultContext.Pixels;
                    int[] p      = srcContext.Pixels;
                    int   length = srcContext.Length;

                    for (int i = 0; i < length; i++)
                    {
                        // Extract
                        int c = p[i];
                        int a = (c >> 24) & 0xff;
                        int r = (c >> 16) & 0xff;
                        int g = (c >> 8) & 0xff;
                        int b = (c) & 0xff;

                        // Invert
                        r = 255 - r;
                        g = 255 - g;
                        b = 255 - b;

                        // Set
                        rp[i] = (a << 24) | (r << 16) | (g << 8) | b;
                    }

                    return(result);
                }
            }
        }
Exemple #7
0
 /// <summary>
 /// Sets the color of the pixel including the alpha value and using a precalculated index (faster).
 /// For best performance this method should not be used in iterative real-time scenarios. Implement the code directly inside a loop.
 /// </summary>
 /// <param name="bmp">The WriteableBitmap.</param>
 /// <param name="index">The coordinate index.</param>
 /// <param name="a">The alpha value of the color.</param>
 /// <param name="r">The red value of the color.</param>
 /// <param name="g">The green value of the color.</param>
 /// <param name="b">The blue value of the color.</param>
 public static void SetPixeli(this BitmapBuffer bmp, int index, byte a, byte r, byte g, byte b)
 {
     using (var context = bmp.GetBitmapContext())
     {
         context.Pixels[index] = (a << 24) | (r << 16) | (g << 8) | b;
     }
 }
Exemple #8
0
        ///// <summary>
        ///// Applies the given function to all the pixels of the bitmap in
        ///// order to set their color.
        ///// </summary>
        ///// <param name="bmp">The WriteableBitmap.</param>
        ///// <param name="func">The function to apply. With parameters x, y and a color as a result</param>
        //public static void dbugForEach(this BitmapBuffer bmp, Func<int, int, ColorInt> func)
        //{
        //    using (var context = bmp.GetBitmapContext())
        //    {
        //        int[] pixels = context.Pixels;
        //        int w = context.Width;
        //        int h = context.Height;
        //        int index = 0;

        //        for (int y = 0; y < h; y++)
        //        {
        //            for (int x = 0; x < w; x++)
        //            {
        //                pixels[index++] = func(x, y).ToPreMultAlphaColor();
        //            }
        //        }
        //    }
        //}

        ///// <summary>
        ///// Applies the given function to all the pixels of the bitmap in
        ///// order to set their color.
        ///// </summary>
        ///// <param name="bmp">The WriteableBitmap.</param>
        ///// <param name="func">The function to apply. With parameters x, y, source color and a color as a result</param>
        //public static void dbugForEach(this BitmapBuffer bmp, Func<int, int, ColorInt, ColorInt> func)
        //{
        //    using (var context = bmp.GetBitmapContext())
        //    {
        //        int[] pixels = context.Pixels;
        //        int w = context.Width;
        //        int h = context.Height;
        //        int index = 0;

        //        for (int y = 0; y < h; y++)
        //        {
        //            for (int x = 0; x < w; x++)
        //            {
        //                int c = pixels[index];

        //                // Premultiplied Alpha!
        //                byte a = (byte)(c >> 24);
        //                // Prevent division by zero
        //                int ai = a;
        //                if (ai == 0)
        //                {
        //                    ai = 1;
        //                }
        //                // Scale inverse alpha to use cheap integer mul bit shift
        //                ai = ((255 << 8) / ai);
        //                ColorInt srcColor = ColorInt.FromArgb(a,
        //                                              (byte)((((c >> 16) & 0xFF) * ai) >> 8),
        //                                              (byte)((((c >> 8) & 0xFF) * ai) >> 8),
        //                                              (byte)((((c & 0xFF) * ai) >> 8)));


        //                pixels[index++] = func(x, y, srcColor).ToPreMultAlphaColor();
        //            }
        //        }
        //    }
        //}


        /// <summary>
        /// Gets the color of the pixel at the x, y coordinate as integer.
        /// For best performance this method should not be used in iterative real-time scenarios. Implement the code directly inside a loop.
        /// </summary>
        /// <param name="bmp">The WriteableBitmap.</param>
        /// <param name="x">The x coordinate of the pixel.</param>
        /// <param name="y">The y coordinate of the pixel.</param>
        /// <returns>The color of the pixel at x, y.</returns>
        public static int dbugGetPixeli(this BitmapBuffer bmp, int x, int y)
        {
            using (var context = bmp.GetBitmapContext(ReadWriteMode.ReadOnly))
            {
                return(context.Pixels[y * context.Width + x]);
            }
        }
Exemple #9
0
 /// <summary>
 /// Fills the whole WriteableBitmap with an empty color (0).
 /// </summary>
 /// <param name="bmp">The WriteableBitmap.</param>
 public static void Clear(this BitmapBuffer bmp)
 {
     using (var context = bmp.GetBitmapContext())
     {
         context.Clear();
     }
 }
Exemple #10
0
 /// <summary>
 /// Sets the color of the pixel.
 /// For best performance this method should not be used in iterative real-time scenarios. Implement the code directly inside a loop.
 /// </summary>
 /// <param name="bmp">The WriteableBitmap.</param>
 /// <param name="x">The x coordinate (row).</param>
 /// <param name="y">The y coordinate (column).</param>
 /// <param name="color">The color.</param>
 public static void SetPixel(this BitmapBuffer bmp, int x, int y, int color)
 {
     using (var context = bmp.GetBitmapContext())
     {
         context.Pixels[y * context.Width + x] = color;
     }
 }
Exemple #11
0
        /// <summary>
        /// Draws a closed Cardinal spline (cubic) defined by a point collection.
        /// The cardinal spline passes through each point in the collection.
        /// </summary>
        /// <param name="bmp">The WriteableBitmap.</param>
        /// <param name="points">The points for the curve in x and y pairs, therefore the array is interpreted as (x1, y1, x2, y2, x3, y3, x4, y4, x1, x2 ..., xn, yn).</param>
        /// <param name="tension">The tension of the curve defines the shape. Usually between 0 and 1. 0 would be a straight line.</param>
        /// <param name="color">The color for the spline.</param>
        public static void DrawCurveClosed(this BitmapBuffer bmp, int[] points, float tension, int color)
        {
            using (var context = bmp.GetBitmapContext())
            {
                // Use refs for faster access (really important!) speeds up a lot!
                int w = context.Width;
                int h = context.Height;

                int pn = points.Length;

                // First segment
                DrawCurveSegment(points[pn - 2], points[pn - 1], points[0], points[1], points[2], points[3], points[4], points[5], tension, color, context, w, h);

                // Middle segments
                int i;
                for (i = 2; i < pn - 4; i += 2)
                {
                    DrawCurveSegment(points[i - 2], points[i - 1], points[i], points[i + 1], points[i + 2], points[i + 3], points[i + 4], points[i + 5], tension, color, context, w, h);
                }

                // Last segment
                DrawCurveSegment(points[i - 2], points[i - 1], points[i], points[i + 1], points[i + 2], points[i + 3], points[0], points[1], tension, color, context, w, h);

                // Last-to-First segment
                DrawCurveSegment(points[i], points[i + 1], points[i + 2], points[i + 3], points[0], points[1], points[2], points[3], tension, color, context, w, h);
            }
        }
        /// <summary>
        /// Creates a new WriteableBitmap which is the grayscaled version of this one and returns it. The gray values are equal to the brightness values.
        /// </summary>
        /// <param name="bmp">The WriteableBitmap.</param>
        /// <returns>The new gray WriteableBitmap.</returns>
        public static BitmapBuffer Gray(this BitmapBuffer bmp)
        {
            using (var context = bmp.GetBitmapContext(ReadWriteMode.ReadOnly))
            {
                int          nWidth  = context.Width;
                int          nHeight = context.Height;
                int[]        px      = context.Pixels;
                BitmapBuffer result  = BitmapBufferFactory.New(nWidth, nHeight);

                using (var dest = result.GetBitmapContext())
                {
                    int[] rp  = dest.Pixels;
                    int   len = context.Length;
                    for (int i = 0; i < len; i++)
                    {
                        // Extract
                        int c = px[i];
                        int a = (c >> 24) & 0xff;
                        int r = (c >> 16) & 0xff;
                        int g = (c >> 8) & 0xff;
                        int b = (c) & 0xff;

                        // Convert to gray with constant factors 0.2126, 0.7152, 0.0722
                        r = g = b = ((r * 6966 + g * 23436 + b * 2366) >> 15);

                        // Set
                        rp[i] = (a << 24) | (r << 16) | (g << 8) | b;
                    }
                }

                return(result);
            }
        }
        /// <summary>
        /// Flips (reflects the image) either vertical or horizontal.
        /// </summary>
        /// <param name="bmp">The WriteableBitmap.</param>
        /// <param name="flipMode">The flip mode.</param>
        /// <returns>A new WriteableBitmap that is a flipped version of the input.</returns>
        public static BitmapBuffer Flip(this BitmapBuffer bmp, FlipMode flipMode)
        {
            using (var context = bmp.GetBitmapContext(ReadWriteMode.ReadOnly))
            {
                // Use refs for faster access (really important!) speeds up a lot!
                int          w      = context.Width;
                int          h      = context.Height;
                int[]        p      = context.Pixels;
                int          i      = 0;
                BitmapBuffer result = BitmapBufferFactory.New(w, h);

                if (flipMode == FlipMode.Horizontal)
                {
                    using (BitmapContext destContext = result.GetBitmapContext())
                    {
                        int[] rp = destContext.Pixels;
                        for (int y = h - 1; y >= 0; y--)
                        {
                            for (int x = 0; x < w; x++)
                            {
                                int srcInd = y * w + x;
                                rp[i] = p[srcInd];
                                i++;
                            }
                        }
                    }
                }
                else if (flipMode == FlipMode.Vertical)
                {
                    using (BitmapContext destContext = result.GetBitmapContext())
                    {
                        int[] rp = destContext.Pixels;
                        for (int y = 0; y < h; y++)
                        {
                            for (int x = w - 1; x >= 0; x--)
                            {
                                int srcInd = y * w + x;
                                rp[i] = p[srcInd];
                                i++;
                            }
                        }
                    }
                }

                return(result);
            }
        }
Exemple #14
0
 /// <summary>
 /// Sets the color of the pixel using an extra alpha value.
 /// For best performance this method should not be used in iterative real-time scenarios. Implement the code directly inside a loop.
 /// </summary>
 /// <param name="bmp">The WriteableBitmap.</param>
 /// <param name="x">The x coordinate (row).</param>
 /// <param name="y">The y coordinate (column).</param>
 /// <param name="a">The alpha value of the color.</param>
 /// <param name="color">The color.</param>
 public static void SetPixel(this BitmapBuffer bmp, int x, int y, byte a, ColorInt color)
 {
     using (var context = bmp.GetBitmapContext())
     {
         // Add one to use mul and cheap bit shift for multiplicaltion
         context.Pixels[y * context.Width + x] = color.ToPreMultAlphaColor();
     }
 }
Exemple #15
0
 /// <summary>
 /// Copies color information from an ARGB byte array into this WriteableBitmap starting at a specific buffer index.
 /// </summary>
 /// <param name="bmp">The WriteableBitmap.</param>
 /// <param name="offset">The starting index in the buffer.</param>
 /// <param name="count">The number of bytes to copy from the buffer.</param>
 /// <param name="buffer">The color buffer as byte ARGB values.</param>
 /// <returns>The WriteableBitmap that was passed as parameter.</returns>
 public static BitmapBuffer FromByteArray(this BitmapBuffer bmp, byte[] buffer, int offset, int count)
 {
     using (var context = bmp.GetBitmapContext())
     {
         BitmapContext.BlockCopy(buffer, offset, context, 0, count);
         return(bmp);
     }
 }
Exemple #16
0
        /// <summary>
        /// Draws a cubic Beziér spline defined by start, end and two control points.
        /// </summary>
        /// <param name="bmp">The WriteableBitmap.</param>
        /// <param name="x1">The x-coordinate of the start point.</param>
        /// <param name="y1">The y-coordinate of the start point.</param>
        /// <param name="cx1">The x-coordinate of the 1st control point.</param>
        /// <param name="cy1">The y-coordinate of the 1st control point.</param>
        /// <param name="cx2">The x-coordinate of the 2nd control point.</param>
        /// <param name="cy2">The y-coordinate of the 2nd control point.</param>
        /// <param name="x2">The x-coordinate of the end point.</param>
        /// <param name="y2">The y-coordinate of the end point.</param>
        /// <param name="color">The color.</param>
        public static void DrawBezier(this BitmapBuffer bmp, int x1, int y1, int cx1, int cy1, int cx2, int cy2, int x2, int y2, int color)
        {
            // Determine distances between controls points (bounding rect) to find the optimal stepsize
            int minX = Math.Min(x1, Math.Min(cx1, Math.Min(cx2, x2)));
            int minY = Math.Min(y1, Math.Min(cy1, Math.Min(cy2, y2)));
            int maxX = Math.Max(x1, Math.Max(cx1, Math.Max(cx2, x2)));
            int maxY = Math.Max(y1, Math.Max(cy1, Math.Max(cy2, y2)));

            // Get slope
            int lenx = maxX - minX;
            int len  = maxY - minY;

            if (lenx > len)
            {
                len = lenx;
            }

            // Prevent division by zero
            if (len != 0)
            {
                using (var context = bmp.GetBitmapContext())
                {
                    // Use refs for faster access (really important!) speeds up a lot!
                    int w = context.Width;
                    int h = context.Height;

                    // Init vars
                    float step = STEP_FACTOR / len;
                    int   tx1 = x1;
                    int   ty1 = y1;
                    int   tx2, ty2;

                    // Interpolate
                    for (float t = step; t <= 1; t += step)
                    {
                        float tSq  = t * t;
                        float t1   = 1 - t;
                        float t1Sq = t1 * t1;

                        tx2 = (int)(t1 * t1Sq * x1 + 3 * t * t1Sq * cx1 + 3 * t1 * tSq * cx2 + t * tSq * x2);
                        ty2 = (int)(t1 * t1Sq * y1 + 3 * t * t1Sq * cy1 + 3 * t1 * tSq * cy2 + t * tSq * y2);

                        // Draw line
                        DrawLine(context, w, h, tx1, ty1, tx2, ty2, color);
                        tx1 = tx2;
                        ty1 = ty2;
                    }

                    // Prevent rounding gap
                    DrawLine(context, w, h, tx1, ty1, x2, y2, color);
                }
            }
        }
Exemple #17
0
 /// <summary>
 /// Clones the specified WriteableBitmap.
 /// </summary>
 /// <param name="bmp">The WriteableBitmap.</param>
 /// <returns>A copy of the WriteableBitmap.</returns>
 public static BitmapBuffer Clone(this BitmapBuffer bmp)
 {
     using (var srcContext = bmp.GetBitmapContext(ReadWriteMode.ReadOnly))
     {
         BitmapBuffer result = BitmapBufferFactory.New(srcContext.Width, srcContext.Height);
         using (var destContext = result.GetBitmapContext())
         {
             BitmapContext.BlockCopy(srcContext, 0, destContext, 0, srcContext.Length * ARGB_SIZE);
         }
         return(result);
     }
 }
        /// <summary>
        /// Creates a new resized WriteableBitmap.
        /// </summary>
        /// <param name="bmp">The WriteableBitmap.</param>
        /// <param name="width">The new desired width.</param>
        /// <param name="height">The new desired height.</param>
        /// <param name="interpolation">The interpolation method that should be used.</param>
        /// <returns>A new WriteableBitmap that is a resized version of the input.</returns>
        public static BitmapBuffer Resize(this BitmapBuffer bmp, int width, int height, Interpolation interpolation)
        {
            using (var srcContext = bmp.GetBitmapContext(ReadWriteMode.ReadOnly))
            {
                int[] pd = Resize(srcContext, srcContext.Width, srcContext.Height, width, height, interpolation);

                BitmapBuffer result = BitmapBufferFactory.New(width, height);
                using (var dstContext = result.GetBitmapContext())
                {
                    BitmapContext.BlockCopy(pd, 0, dstContext, 0, ARGB_SIZE * pd.Length);
                }
                return(result);
            }
        }
Exemple #19
0
        /// <summary>
        /// Gets the brightness / luminance of the pixel at the x, y coordinate as byte.
        /// </summary>
        /// <param name="bmp">The WriteableBitmap.</param>
        /// <param name="x">The x coordinate of the pixel.</param>
        /// <param name="y">The y coordinate of the pixel.</param>
        /// <returns>The brightness of the pixel at x, y.</returns>
        public static byte GetBrightness(this BitmapBuffer bmp, int x, int y)
        {
            using (var context = bmp.GetBitmapContext(ReadWriteMode.ReadOnly))
            {
                // Extract color components
                int  c = context.Pixels[y * context.Width + x];
                byte r = (byte)(c >> 16);
                byte g = (byte)(c >> 8);
                byte b = (byte)(c);

                // Convert to gray with constant factors 0.2126, 0.7152, 0.0722
                return((byte)((r * 6966 + g * 23436 + b * 2366) >> 15));
            }
        }
Exemple #20
0
        /// <summary>
        /// Copies the Pixels from the WriteableBitmap into a ARGB byte array starting at a specific Pixels index.
        /// </summary>
        /// <param name="bmp">The WriteableBitmap.</param>
        /// <param name="offset">The starting Pixels index.</param>
        /// <param name="count">The number of Pixels to copy, -1 for all</param>
        /// <returns>The color buffer as byte ARGB values.</returns>
        public static byte[] ToByteArray(this BitmapBuffer bmp, int offset, int count)
        {
            using (var context = bmp.GetBitmapContext(ReadWriteMode.ReadOnly))
            {
                if (count == -1)
                {
                    // Copy all to byte array
                    count = context.Length;
                }

                int    len    = count * ARGB_SIZE;
                byte[] result = new byte[len]; // ARGB
                BitmapContext.BlockCopy(context, offset, result, 0, len);
                return(result);
            }
        }
        /// <summary>
        /// Creates a new cropped WriteableBitmap.
        /// </summary>
        /// <param name="bmp">The WriteableBitmap.</param>
        /// <param name="x">The x coordinate of the rectangle that defines the crop region.</param>
        /// <param name="y">The y coordinate of the rectangle that defines the crop region.</param>
        /// <param name="width">The width of the rectangle that defines the crop region.</param>
        /// <param name="height">The height of the rectangle that defines the crop region.</param>
        /// <returns>A new WriteableBitmap that is a cropped version of the input.</returns>
        public static BitmapBuffer Crop(this BitmapBuffer bmp, int x, int y, int width, int height)
        {
            using (var srcContext = bmp.GetBitmapContext(ReadWriteMode.ReadOnly))
            {
                int srcWidth  = srcContext.Width;
                int srcHeight = srcContext.Height;

                // If the rectangle is completely out of the bitmap
                if (x > srcWidth || y > srcHeight)
                {
                    return(BitmapBufferFactory.New(0, 0));
                }

                // Clamp to boundaries
                if (x < 0)
                {
                    x = 0;
                }
                if (x + width > srcWidth)
                {
                    width = srcWidth - x;
                }
                if (y < 0)
                {
                    y = 0;
                }
                if (y + height > srcHeight)
                {
                    height = srcHeight - y;
                }

                // Copy the pixels line by line using fast BlockCopy
                BitmapBuffer result = BitmapBufferFactory.New(width, height);
                using (var destContext = result.GetBitmapContext())
                {
                    for (int line = 0; line < height; line++)
                    {
                        int srcOff = ((y + line) * srcWidth + x) * ARGB_SIZE;
                        int dstOff = line * width * ARGB_SIZE;
                        BitmapContext.BlockCopy(srcContext, srcOff, destContext, dstOff, width * ARGB_SIZE);
                    }

                    return(result);
                }
            }
        }
        /// <summary>
        /// Creates a new WriteableBitmap which is contrast adjusted version of this one and returns it.
        /// </summary>
        /// <param name="bmp">The WriteableBitmap.</param>
        /// <param name="level">Level of contrast as double. [-255.0, 255.0] </param>
        /// <returns>The new WriteableBitmap.</returns>
        public static BitmapBuffer AdjustContrast(this BitmapBuffer bmp, double level)
        {
            int factor = (int)((259.0 * (level + 255.0)) / (255.0 * (259.0 - level)) * 255.0);

            using (var context = bmp.GetBitmapContext(ReadWriteMode.ReadOnly))
            {
                int          nWidth  = context.Width;
                int          nHeight = context.Height;
                int[]        px      = context.Pixels;
                BitmapBuffer result  = BitmapBufferFactory.New(nWidth, nHeight);

                using (var dest = result.GetBitmapContext())
                {
                    int[] rp  = dest.Pixels;
                    int   len = context.Length;
                    for (int i = 0; i < len; i++)
                    {
                        // Extract
                        int c = px[i];
                        int a = (c >> 24) & 0xff;
                        int r = (c >> 16) & 0xff;
                        int g = (c >> 8) & 0xff;
                        int b = (c) & 0xff;

                        // Adjust contrast based on computed factor
                        //TODO: create lookup table for this
                        r = ((factor * (r - 128)) >> 8) + 128;
                        g = ((factor * (g - 128)) >> 8) + 128;
                        b = ((factor * (b - 128)) >> 8) + 128;

                        // Clamp
                        r = r < 0 ? 0 : r > 255 ? 255 : r;
                        g = g < 0 ? 0 : g > 255 ? 255 : g;
                        b = b < 0 ? 0 : b > 255 ? 255 : b;

                        // Set
                        rp[i] = (a << 24) | (r << 16) | (g << 8) | b;
                    }
                }

                return(result);
            }
        }
        /// <summary>
        /// Creates a new WriteableBitmap which is gamma adjusted version of this one and returns it.
        /// </summary>
        /// <param name="bmp">The WriteableBitmap.</param>
        /// <param name="value">Value of gamma for adjustment. Original is 1.0.</param>
        /// <returns>The new WriteableBitmap.</returns>
        public static BitmapBuffer AdjustGamma(this BitmapBuffer bmp, double value)
        {
            using (var context = bmp.GetBitmapContext(ReadWriteMode.ReadOnly))
            {
                int          nWidth    = context.Width;
                int          nHeight   = context.Height;
                int[]        srcPixels = context.Pixels;
                BitmapBuffer result    = BitmapBufferFactory.New(nWidth, nHeight);

                using (var dest = result.GetBitmapContext())
                {
                    int[] rp = dest.Pixels;
                    var   gammaCorrection = 1.0 / value;
                    int   len             = context.Length;
                    for (int i = 0; i < len; i++)
                    {
                        // Extract
                        int c = srcPixels[i];
                        int a = (c >> 24) & 0xff;
                        int r = (c >> 16) & 0xff;
                        int g = (c >> 8) & 0xff;
                        int b = (c) & 0xff;

                        //Gamma adjustment
                        //TODO: create gamma-lookup table for this
                        r = (int)(255.0 * Math.Pow((r / 255.0), gammaCorrection));
                        g = (int)(255.0 * Math.Pow((g / 255.0), gammaCorrection));
                        b = (int)(255.0 * Math.Pow((b / 255.0), gammaCorrection));

                        // Clamps
                        r = r < 0 ? 0 : r > 255 ? 255 : r;
                        g = g < 0 ? 0 : g > 255 ? 255 : g;
                        b = b < 0 ? 0 : b > 255 ? 255 : b;

                        // Set
                        rp[i] = (a << 24) | (r << 16) | (g << 8) | b;
                    }
                }

                return(result);
            }
        }
        /// <summary>
        /// Creates a new WriteableBitmap which is brightness adjusted version of this one and returns it.
        /// </summary>
        /// <param name="bmp">The WriteableBitmap.</param>
        /// <param name="nLevel">Level of contrast as double. [-255.0, 255.0] </param>
        /// <returns>The new WriteableBitmap.</returns>
        public static BitmapBuffer AdjustBrightness(this BitmapBuffer bmp, int nLevel)
        {
            using (var context = bmp.GetBitmapContext(ReadWriteMode.ReadOnly))
            {
                int          nWidth  = context.Width;
                int          nHeight = context.Height;
                int[]        px      = context.Pixels;
                BitmapBuffer result  = BitmapBufferFactory.New(nWidth, nHeight);

                using (var dest = result.GetBitmapContext())
                {
                    int[] rp  = dest.Pixels;
                    int   len = context.Length;
                    for (int i = 0; i < len; i++)
                    {
                        // Extract
                        int c = px[i];
                        int a = (c >> 24) & 0xff;
                        int r = (c >> 16) & 0xff;
                        int g = (c >> 8) & 0xff;
                        int b = (c) & 0xff;

                        // Brightness adjustment
                        //TODO: create lookup table for this
                        r += nLevel;
                        g += nLevel;
                        b += nLevel;

                        // Clamp
                        r = r < 0 ? 0 : r > 255 ? 255 : r;
                        g = g < 0 ? 0 : g > 255 ? 255 : g;
                        b = b < 0 ? 0 : b > 255 ? 255 : b;

                        // Set
                        rp[i] = (a << 24) | (r << 16) | (g << 8) | b;
                    }
                }

                return(result);
            }
        }
Exemple #25
0
        /// <summary>
        /// Gets the color of the pixel at the x, y coordinate as a Color struct.
        /// For best performance this method should not be used in iterative real-time scenarios. Implement the code directly inside a loop.
        /// </summary>
        /// <param name="bmp">The WriteableBitmap.</param>
        /// <param name="x">The x coordinate of the pixel.</param>
        /// <param name="y">The y coordinate of the pixel.</param>
        /// <returns>The color of the pixel at x, y as a Color struct.</returns>
        public static ColorInt dbugGetPixel(this BitmapBuffer bmp, int x, int y)
        {
            using (var context = bmp.GetBitmapContext(ReadWriteMode.ReadOnly))
            {
                int  c = context.Pixels[y * context.Width + x];
                byte a = (byte)(c >> 24);

                // Prevent division by zero
                int ai = a;
                if (ai == 0)
                {
                    ai = 1;
                }

                // Scale inverse alpha to use cheap integer mul bit shift
                ai = ((255 << 8) / ai);
                return(ColorInt.FromArgb(a,
                                         (byte)((((c >> 16) & 0xFF) * ai) >> 8),
                                         (byte)((((c >> 8) & 0xFF) * ai) >> 8),
                                         (byte)((((c & 0xFF) * ai) >> 8))));
            }
        }
Exemple #26
0
        /// <summary>
        /// Writes the WriteableBitmap as a TGA image to a stream.
        /// Used with permission from Nokola: http://nokola.com/blog/post/2010/01/21/Quick-and-Dirty-Output-of-WriteableBitmap-as-TGA-Image.aspx
        /// </summary>
        /// <param name="bmp">The WriteableBitmap.</param>
        /// <param name="destination">The destination stream.</param>
        public static void WriteTga(this BitmapBuffer bmp, Stream destination)
        {
            using (var context = bmp.GetBitmapContext(ReadWriteMode.ReadOnly))
            {
                int    width  = context.Width;
                int    height = context.Height;
                int[]  pixels = context.Pixels;
                byte[] data   = new byte[context.Length * ARGB_SIZE];

                // Copy bitmap data as BGRA
                int offsetSource = 0;
                int width4       = width << 2;
                int width8       = width << 3;
                int offsetDest   = (height - 1) * width4;
                for (int y = 0; y < height; y++)
                {
                    for (int x = 0; x < width; x++)
                    {
                        // Account for pre-multiplied alpha
                        int  c = pixels[offsetSource];
                        byte a = (byte)(c >> 24);

                        // Prevent division by zero
                        int ai = a;
                        if (ai == 0)
                        {
                            ai = 1;
                        }

                        // Scale inverse alpha to use cheap integer mul bit shift
                        ai = ((255 << 8) / ai);
                        data[offsetDest + 3] = (byte)a;                                // A
                        data[offsetDest + 2] = (byte)((((c >> 16) & 0xFF) * ai) >> 8); // R
                        data[offsetDest + 1] = (byte)((((c >> 8) & 0xFF) * ai) >> 8);  // G
                        data[offsetDest]     = (byte)((((c & 0xFF) * ai) >> 8));       // B

                        offsetSource++;
                        offsetDest += ARGB_SIZE;
                    }
                    offsetDest -= width8;
                }

                // Create header
                var header = new byte[]
                {
                    0, // ID length
                    0, // no color map
                    2, // uncompressed, true color
                    0, 0, 0, 0,
                    0,
                    0, 0, 0, 0, // x and y origin
                    (byte)(width & 0x00FF),
                    (byte)((width & 0xFF00) >> 8),
                    (byte)(height & 0x00FF),
                    (byte)((height & 0xFF00) >> 8),
                    32, // 32 bit bitmap
                    0
                };

                // Write header and data
                using (var writer = new BinaryWriter(destination))
                {
                    writer.Write(header);
                    writer.Write(data);
                }
            }
        }
        /// <summary>
        /// Rotates the bitmap in any degree returns a new rotated WriteableBitmap.
        /// </summary>
        /// <param name="bmp">The WriteableBitmap.</param>
        /// <param name="angle">Arbitrary angle in 360 Degrees (positive = clockwise).</param>
        /// <param name="crop">if true: keep the size, false: adjust canvas to new size</param>
        /// <returns>A new WriteableBitmap that is a rotated version of the input.</returns>
        public static BitmapBuffer RotateFree(this BitmapBuffer bmp, double angle, bool crop = true)
        {
            // rotating clockwise, so it's negative relative to Cartesian quadrants
            double cnAngle = -1.0 * (Math.PI / 180) * angle;

            // general iterators
            int i, j;
            // calculated indices in Cartesian coordinates
            int    x, y;
            double fDistance, fPolarAngle;
            // for use in neighboring indices in Cartesian coordinates
            int iFloorX, iCeilingX, iFloorY, iCeilingY;
            // calculated indices in Cartesian coordinates with trailing decimals
            double fTrueX, fTrueY;
            // for interpolation
            double fDeltaX, fDeltaY;

            // interpolated "top" pixels
            double fTopRed, fTopGreen, fTopBlue, fTopAlpha;

            // interpolated "bottom" pixels
            double fBottomRed, fBottomGreen, fBottomBlue, fBottomAlpha;

            // final interpolated color components
            int iRed, iGreen, iBlue, iAlpha;

            int iCentreX, iCentreY;
            int iDestCentreX, iDestCentreY;
            int iWidth, iHeight, newWidth, newHeight;

            using (var bmpContext = bmp.GetBitmapContext(ReadWriteMode.ReadOnly))
            {
                iWidth  = bmpContext.Width;
                iHeight = bmpContext.Height;

                if (crop)
                {
                    newWidth  = iWidth;
                    newHeight = iHeight;
                }
                else
                {
                    double rad = angle / (180 / Math.PI);
                    newWidth  = (int)Math.Ceiling(Math.Abs(Math.Sin(rad) * iHeight) + Math.Abs(Math.Cos(rad) * iWidth));
                    newHeight = (int)Math.Ceiling(Math.Abs(Math.Sin(rad) * iWidth) + Math.Abs(Math.Cos(rad) * iHeight));
                }


                iCentreX = iWidth / 2;
                iCentreY = iHeight / 2;

                iDestCentreX = newWidth / 2;
                iDestCentreY = newHeight / 2;

                BitmapBuffer bmBilinearInterpolation = BitmapBufferFactory.New(newWidth, newHeight);

                using (var bilinearContext = bmBilinearInterpolation.GetBitmapContext())
                {
                    int[] newp = bilinearContext.Pixels;
                    int[] oldp = bmpContext.Pixels;
                    int   oldw = bmpContext.Width;

                    // assigning pixels of destination image from source image
                    // with bilinear interpolation
                    for (i = 0; i < newHeight; ++i)
                    {
                        for (j = 0; j < newWidth; ++j)
                        {
                            // convert raster to Cartesian
                            x = j - iDestCentreX;
                            y = iDestCentreY - i;

                            // convert Cartesian to polar
                            fDistance = Math.Sqrt(x * x + y * y);
                            if (x == 0)
                            {
                                if (y == 0)
                                {
                                    // center of image, no rotation needed
                                    newp[i * newWidth + j] = oldp[iCentreY * oldw + iCentreX];
                                    continue;
                                }
                                if (y < 0)
                                {
                                    fPolarAngle = 1.5 * Math.PI;
                                }
                                else
                                {
                                    fPolarAngle = 0.5 * Math.PI;
                                }
                            }
                            else
                            {
                                fPolarAngle = Math.Atan2(y, x);
                            }

                            // the crucial rotation part
                            // "reverse" rotate, so minus instead of plus
                            fPolarAngle -= cnAngle;

                            // convert polar to Cartesian
                            fTrueX = fDistance * Math.Cos(fPolarAngle);
                            fTrueY = fDistance * Math.Sin(fPolarAngle);

                            // convert Cartesian to raster
                            fTrueX = fTrueX + iCentreX;
                            fTrueY = iCentreY - fTrueY;

                            iFloorX   = (int)(Math.Floor(fTrueX));
                            iFloorY   = (int)(Math.Floor(fTrueY));
                            iCeilingX = (int)(Math.Ceiling(fTrueX));
                            iCeilingY = (int)(Math.Ceiling(fTrueY));

                            // check bounds
                            if (iFloorX < 0 || iCeilingX < 0 || iFloorX >= iWidth || iCeilingX >= iWidth || iFloorY < 0 ||
                                iCeilingY < 0 || iFloorY >= iHeight || iCeilingY >= iHeight)
                            {
                                continue;
                            }

                            fDeltaX = fTrueX - iFloorX;
                            fDeltaY = fTrueY - iFloorY;

                            int clrTopLeft     = oldp[iFloorY * oldw + iFloorX];
                            int clrTopRight    = oldp[iFloorY * oldw + iCeilingX];
                            int clrBottomLeft  = oldp[iCeilingY * oldw + iFloorX];
                            int clrBottomRight = oldp[iCeilingY * oldw + iCeilingX];

                            fTopAlpha = (1 - fDeltaX) * ((clrTopLeft >> 24) & 0xFF) + fDeltaX * ((clrTopRight >> 24) & 0xFF);
                            fTopRed   = (1 - fDeltaX) * ((clrTopLeft >> 16) & 0xFF) + fDeltaX * ((clrTopRight >> 16) & 0xFF);
                            fTopGreen = (1 - fDeltaX) * ((clrTopLeft >> 8) & 0xFF) + fDeltaX * ((clrTopRight >> 8) & 0xFF);
                            fTopBlue  = (1 - fDeltaX) * (clrTopLeft & 0xFF) + fDeltaX * (clrTopRight & 0xFF);

                            // linearly interpolate horizontally between bottom neighbors
                            fBottomAlpha = (1 - fDeltaX) * ((clrBottomLeft >> 24) & 0xFF) + fDeltaX * ((clrBottomRight >> 24) & 0xFF);
                            fBottomRed   = (1 - fDeltaX) * ((clrBottomLeft >> 16) & 0xFF) + fDeltaX * ((clrBottomRight >> 16) & 0xFF);
                            fBottomGreen = (1 - fDeltaX) * ((clrBottomLeft >> 8) & 0xFF) + fDeltaX * ((clrBottomRight >> 8) & 0xFF);
                            fBottomBlue  = (1 - fDeltaX) * (clrBottomLeft & 0xFF) + fDeltaX * (clrBottomRight & 0xFF);

                            // linearly interpolate vertically between top and bottom interpolated results
                            iRed   = (int)(Math.Round((1 - fDeltaY) * fTopRed + fDeltaY * fBottomRed));
                            iGreen = (int)(Math.Round((1 - fDeltaY) * fTopGreen + fDeltaY * fBottomGreen));
                            iBlue  = (int)(Math.Round((1 - fDeltaY) * fTopBlue + fDeltaY * fBottomBlue));
                            iAlpha = (int)(Math.Round((1 - fDeltaY) * fTopAlpha + fDeltaY * fBottomAlpha));

                            // make sure color values are valid
                            if (iRed < 0)
                            {
                                iRed = 0;
                            }
                            if (iRed > 255)
                            {
                                iRed = 255;
                            }
                            if (iGreen < 0)
                            {
                                iGreen = 0;
                            }
                            if (iGreen > 255)
                            {
                                iGreen = 255;
                            }
                            if (iBlue < 0)
                            {
                                iBlue = 0;
                            }
                            if (iBlue > 255)
                            {
                                iBlue = 255;
                            }
                            if (iAlpha < 0)
                            {
                                iAlpha = 0;
                            }
                            if (iAlpha > 255)
                            {
                                iAlpha = 255;
                            }

                            int a = iAlpha + 1;
                            newp[i * newWidth + j] = (iAlpha << 24)
                                                     | ((byte)((iRed * a) >> 8) << 16)
                                                     | ((byte)((iGreen * a) >> 8) << 8)
                                                     | ((byte)((iBlue * a) >> 8));
                        }
                    }
                    return(bmBilinearInterpolation);
                }
            }
        }
        /// <summary>
        /// Rotates the bitmap in 90° steps clockwise and returns a new rotated WriteableBitmap.
        /// </summary>
        /// <param name="bmp">The WriteableBitmap.</param>
        /// <param name="angle">The angle in degrees the bitmap should be rotated in 90° steps clockwise.</param>
        /// <returns>A new WriteableBitmap that is a rotated version of the input.</returns>
        public static BitmapBuffer Rotate(this BitmapBuffer bmp, int angle)
        {
            using (var context = bmp.GetBitmapContext(ReadWriteMode.ReadOnly))
            {
                // Use refs for faster access (really important!) speeds up a lot!
                int          w = context.Width;
                int          h = context.Height;
                int[]        p = context.Pixels;
                int          i = 0;
                BitmapBuffer result;
                angle %= 360;

                if (angle > 0 && angle <= 90)
                {
                    result = BitmapBufferFactory.New(h, w);
                    using (var destContext = result.GetBitmapContext())
                    {
                        var rp = destContext.Pixels;
                        for (int x = 0; x < w; x++)
                        {
                            for (int y = h - 1; y >= 0; y--)
                            {
                                int srcInd = y * w + x;
                                rp[i] = p[srcInd];
                                i++;
                            }
                        }
                    }
                }
                else if (angle > 90 && angle <= 180)
                {
                    result = BitmapBufferFactory.New(w, h);
                    using (var destContext = result.GetBitmapContext())
                    {
                        var rp = destContext.Pixels;
                        for (int y = h - 1; y >= 0; y--)
                        {
                            for (int x = w - 1; x >= 0; x--)
                            {
                                int srcInd = y * w + x;
                                rp[i] = p[srcInd];
                                i++;
                            }
                        }
                    }
                }
                else if (angle > 180 && angle <= 270)
                {
                    result = BitmapBufferFactory.New(h, w);
                    using (var destContext = result.GetBitmapContext())
                    {
                        int[] rp = destContext.Pixels;
                        for (int x = w - 1; x >= 0; x--)
                        {
                            for (int y = 0; y < h; y++)
                            {
                                int srcInd = y * w + x;
                                rp[i] = p[srcInd];
                                i++;
                            }
                        }
                    }
                }
                else
                {
                    result = bmp.Clone();
                }
                return(result);
            }
        }
        /// <summary>
        /// Creates a new filtered WriteableBitmap.
        /// </summary>
        /// <param name="bmp">The WriteableBitmap.</param>
        /// <param name="kernel">The kernel used for convolution.</param>
        /// <param name="kernelFactorSum">The factor used for the kernel summing.</param>
        /// <param name="kernelOffsetSum">The offset used for the kernel summing.</param>
        /// <returns>A new WriteableBitmap that is a filtered version of the input.</returns>
        public static BitmapBuffer Convolute(this BitmapBuffer bmp, int[,] kernel, int kernelFactorSum, int kernelOffsetSum)
        {
            int kh = kernel.GetUpperBound(0) + 1;
            int kw = kernel.GetUpperBound(1) + 1;

            if ((kw & 1) == 0)
            {
                throw new System.InvalidOperationException("Kernel width must be odd!");
            }
            if ((kh & 1) == 0)
            {
                throw new System.InvalidOperationException("Kernel height must be odd!");
            }

            using (var srcContext = bmp.GetBitmapContext(ReadWriteMode.ReadOnly))
            {
                int          w      = srcContext.Width;
                int          h      = srcContext.Height;
                BitmapBuffer result = BitmapBufferFactory.New(w, h);

                using (var resultContext = result.GetBitmapContext())
                {
                    int[] pixels       = srcContext.Pixels;
                    int[] resultPixels = resultContext.Pixels;
                    int   index        = 0;
                    int   kwh          = kw >> 1;
                    int   khh          = kh >> 1;

                    for (int y = 0; y < h; y++)
                    {
                        for (int x = 0; x < w; x++)
                        {
                            int a = 0;
                            int r = 0;
                            int g = 0;
                            int b = 0;

                            for (int kx = -kwh; kx <= kwh; kx++)
                            {
                                int px = kx + x;
                                // Repeat pixels at borders
                                if (px < 0)
                                {
                                    px = 0;
                                }
                                else if (px >= w)
                                {
                                    px = w - 1;
                                }

                                for (int ky = -khh; ky <= khh; ky++)
                                {
                                    int py = ky + y;
                                    // Repeat pixels at borders
                                    if (py < 0)
                                    {
                                        py = 0;
                                    }
                                    else if (py >= h)
                                    {
                                        py = h - 1;
                                    }

                                    int col = pixels[py * w + px];
                                    int k   = kernel[ky + kwh, kx + khh];
                                    a += ((col >> 24) & 0x000000FF) * k;
                                    r += ((col >> 16) & 0x000000FF) * k;
                                    g += ((col >> 8) & 0x000000FF) * k;
                                    b += ((col) & 0x000000FF) * k;
                                }
                            }

                            int ta = ((a / kernelFactorSum) + kernelOffsetSum);
                            int tr = ((r / kernelFactorSum) + kernelOffsetSum);
                            int tg = ((g / kernelFactorSum) + kernelOffsetSum);
                            int tb = ((b / kernelFactorSum) + kernelOffsetSum);

                            // Clamp to byte boundaries
                            byte ba = (byte)((ta > 255) ? 255 : ((ta < 0) ? 0 : ta));
                            byte br = (byte)((tr > 255) ? 255 : ((tr < 0) ? 0 : tr));
                            byte bg = (byte)((tg > 255) ? 255 : ((tg < 0) ? 0 : tg));
                            byte bb = (byte)((tb > 255) ? 255 : ((tb < 0) ? 0 : tb));

                            resultPixels[index++] = (ba << 24) | (br << 16) | (bg << 8) | (bb);
                        }
                    }
                    return(result);
                }
            }
        }