Exemple #1
0
        public Mandelbrot( Platform platform, int width, int height )
        {
            openCLPlatform = platform;
            openCLDevices = openCLPlatform.QueryDevices(DeviceType.ALL);
            openCLContext = openCLPlatform.CreateDefaultContext();
            openCLCQ = openCLContext.CreateCommandQueue(openCLDevices[0], CommandQueueProperties.PROFILING_ENABLE);
            mandelBrotProgram = openCLContext.CreateProgramWithSource(File.ReadAllText("Mandelbrot.cl"));
            try
            {
                mandelBrotProgram.Build();
            }
            catch (OpenCLException)
            {
                string buildLog = mandelBrotProgram.GetBuildLog(openCLDevices[0]);
                MessageBox.Show(buildLog,"Build error(64 bit debug sessions in vs2008 always fail like this - debug in 32 bit or use vs2010)");
                Application.Exit();
            }
            mandelbrotKernel = mandelBrotProgram.CreateKernel("Mandelbrot");

            Left = -2.0f;
            Top = 2.0f;
            Right = 2.0f;
            Bottom = -2.0f;
            BitmapWidth = width;
            BitmapHeight = height;

            mandelbrotMemBuffer = openCLContext.CreateBuffer((MemFlags)((long)MemFlags.WRITE_ONLY), width*height*4, IntPtr.Zero);
        }
        public void Initialize(int index)
        {
            // Query Devices, create a Context+Command Queue and compile a program
            context = devices[index].Platform.CreateDefaultContext();
            queue   = context.CreateCommandQueue(devices[index], CommandQueueProperties.PROFILING_ENABLE);
            Console.WriteLine(devices[index].Vendor + " " + devices[index].Name);
            // Load and build source+create a kernel
            OpenCLNet.Program programForTimeSeries = context.CreateProgramWithSource(processTimeSeriesSource);
            try
            {
                programForTimeSeries.Build();
            }
            catch
            {
                Console.WriteLine(programForTimeSeries.GetBuildLog(devices[index]));
            }
            kernelForTimeSeries = programForTimeSeries.CreateKernel("KernelFunction");

            OpenCLNet.Program programForDataSets = context.CreateProgramWithSource(processDataSetSource);
            try
            {
                programForDataSets.Build();
            }
            catch
            {
                Console.WriteLine(programForDataSets.GetBuildLog(devices[index]));
            }
            kernelForDataSets = programForDataSets.CreateKernel("KernelFunction");
            selectedDevice    = index;
            workGroupSize     = (int)devices[index].MaxWorkGroupSize;
        }
Exemple #3
0
        /// <summary>
        /// Create a OpenCLManager, configure it, and then create a context using all devices in platform 0,
        /// Once the context is up and running we compile our source file "OpenCLFunctions.cl"
        /// The Helper automatically compiles and creates kernels.
        /// We can then extract named kernels using the GetKernel method.
        ///
        /// For more advanced scenarios, one might use the functions in the Platform class
        /// to query devices, create contexts etc. Platforms can be enumerated using
        /// for( int i=0; i<OpenCL.NumberofPlatforms; i++ )
        ///     Platform p = OpenCL.GetPlatform(i);
        /// </summary>
        private void InitializeOpenCL()
        {
            if (OpenCL.NumberOfPlatforms == 0)
            {
                MessageBox.Show("OpenCL not available");
                Application.Exit();
            }

            OCLMan = new OpenCLManager();
            // Attempt to save binaries after compilation, as well as load precompiled binaries
            // to avoid compilation. Usually you'll want this to be true.
            OCLMan.AttemptUseBinaries = true;
            // Attempt to compile sources. This should probably be true for almost all projects.
            // Setting it to false means that when you attempt to compile "mysource.cl", it will
            // only scan the precompiled binary directory for a binary corresponding to a source
            // with that name. There's a further restriction that the compiled binary also has to
            // use the same Defines and BuildOptions
            OCLMan.AttemptUseSource = true;
            // Binary and source paths
            // This is where we store our sources and where compiled binaries are placed
            OCLMan.BinaryPath = @"OpenCL\bin";
            OCLMan.SourcePath = @"OpenCL\src";
            // If true, RequireImageSupport will filter out any devices without image support
            // In this project we don't need image support though, so we set it to false
            OCLMan.RequireImageSupport = false;
            // The Defines string gets prepended to any and all sources that are compiled
            // and serve as a convenient way to pass configuration information to the compilation process
            OCLMan.Defines = "#define MyCompany_MyProject_Define 1";
            // The BuildOptions string is passed directly to clBuild and can be used to do debug builds etc
            OCLMan.BuildOptions = "";

            OCLMan.CreateDefaultContext(0, DeviceType.ALL);

            OCLProgram = OCLMan.CompileFile("OpenCLFunctions.cl");

            for (int i = 0; i < OCLMan.Context.Devices.Length; i++)
            {
                comboBoxDeviceSelector.Items.Add(OCLMan.Context.Devices[i].Vendor + ":" + OCLMan.Context.Devices[i].Name);
            }
            comboBoxDeviceSelector.SelectedIndex = 0;

            CrossFadeKernel = OCLProgram.CreateKernel("CrossFade");
        }
Exemple #4
0
        private void InitializeOpenCL()
        {
            if (OpenCL.NumberOfPlatforms == 0)
            {
                MessageBox.Show("OpenCL не поддерживается вашей системой!");
                Application.Exit();
            }

            manager = new OpenCLManager();
            manager.AttemptUseBinaries  = true;
            manager.AttemptUseSource    = true;
            manager.RequireImageSupport = false;
            manager.BuildOptions        = "";

            manager.CreateDefaultContext(0, DeviceType.ALL);

            // Компиляция OpenCL кода
            program = manager.CompileSource(Properties.Resources.DVR);
            kernel  = program.CreateKernel("DVR");
        }
Exemple #5
0
 public void BuildOCLSource(string source)
 {
     oclProgram = oclContext.CreateProgramWithSource(source);
     oclProgram.Build();
     FilterKernel = oclProgram.CreateKernel("FilterImage");
 }
Exemple #6
0
        private void InitializeOpenCL()
        {
            if (OpenCL.NumberOfPlatforms == 0)
            {
                MessageBox.Show("OpenCL не поддерживается вашей системой!");
                Application.Exit();
            }

            manager = new OpenCLManager();
            manager.AttemptUseBinaries = true;
            manager.AttemptUseSource = true;
            manager.RequireImageSupport = false;
            manager.BuildOptions = "";

            manager.CreateDefaultContext(0, DeviceType.ALL);

            // Компиляция OpenCL кода
            program = manager.CompileSource(Properties.Resources.DVR);
            kernel = program.CreateKernel("DVR");
        }
		unsafe public FLACCLTask(Program _openCLProgram, int channelsCount, int channels, uint bits_per_sample, int max_frame_size, FLACCLWriter writer, int groupSize, bool gpuOnly, bool gpuRice)
		{
			this.UseGPUOnly = gpuOnly;
			this.UseGPURice = gpuOnly && gpuRice;
			this.UseMappedMemory = writer._settings.MappedMemory || writer._settings.DeviceType == OpenCLDeviceType.CPU;
			this.groupSize = groupSize;
			this.channels = channels;
			this.channelsCount = channelsCount;
			this.writer = writer;
			openCLProgram = _openCLProgram;
#if DEBUG
			var prop = CommandQueueProperties.PROFILING_ENABLE;
#else
			var prop = CommandQueueProperties.NONE;
#endif
			openCLCQ = openCLProgram.Context.CreateCommandQueue(openCLProgram.Context.Devices[0], prop);

            int MAX_ORDER = this.writer.eparams.max_prediction_order;
			int MAX_FRAMES = this.writer.framesPerTask;
			int MAX_CHANNELSIZE = MAX_FRAMES * ((writer.eparams.block_size + 3) & ~3);
			residualTasksLen = sizeof(FLACCLSubframeTask) * 32 * channelsCount * MAX_FRAMES;
			bestResidualTasksLen = sizeof(FLACCLSubframeTask) * channels * MAX_FRAMES;
			int samplesBufferLen = writer.PCM.BlockAlign * MAX_CHANNELSIZE * channelsCount;
			int residualBufferLen = sizeof(int) * MAX_CHANNELSIZE * channels; // need to adjust residualOffset?
			int partitionsLen = sizeof(int) * ((writer.PCM.BitsPerSample > 16 ? 31 : 15) * 2 << 8) * channels * MAX_FRAMES;
			int riceParamsLen = sizeof(int) * (4 << 8) * channels * MAX_FRAMES;
			int autocorLen = sizeof(float) * (MAX_ORDER + 1) * lpc.MAX_LPC_WINDOWS * channelsCount * MAX_FRAMES;
            int lpcDataLen = autocorLen * 32;
			int resOutLen = sizeof(int) * channelsCount * (lpc.MAX_LPC_WINDOWS * lpc.MAX_LPC_ORDER + 8) * MAX_FRAMES;
			int wndLen = sizeof(float) * MAX_CHANNELSIZE /** 2*/ * lpc.MAX_LPC_WINDOWS;
			int selectedLen = sizeof(int) * 32 * channelsCount * MAX_FRAMES;
			int riceLen = sizeof(int) * channels * MAX_CHANNELSIZE;

            if (!this.UseMappedMemory)
            {
                clSamplesBytes = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, samplesBufferLen / 2);
				clResidual = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, residualBufferLen);
                clBestRiceParams = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, riceParamsLen / 4);
                clResidualTasks = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, residualTasksLen);
                clBestResidualTasks = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, bestResidualTasksLen);
                clWindowFunctions = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, wndLen);
				clSelectedTasks = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, selectedLen);
				clRiceOutput = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, riceLen);

                clSamplesBytesPinned = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, samplesBufferLen / 2);
				clResidualPinned = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, residualBufferLen);
                clBestRiceParamsPinned = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, riceParamsLen / 4);
                clResidualTasksPinned = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, residualTasksLen);
                clBestResidualTasksPinned = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, bestResidualTasksLen);
                clWindowFunctionsPinned = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, wndLen);
				clSelectedTasksPinned = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, selectedLen);
				clRiceOutputPinned = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, riceLen);

                clSamplesBytesPtr = openCLCQ.EnqueueMapBuffer(clSamplesBytesPinned, true, MapFlags.READ_WRITE, 0, samplesBufferLen / 2);
				clResidualPtr = openCLCQ.EnqueueMapBuffer(clResidualPinned, true, MapFlags.READ_WRITE, 0, residualBufferLen);
				clBestRiceParamsPtr = openCLCQ.EnqueueMapBuffer(clBestRiceParamsPinned, true, MapFlags.READ_WRITE, 0, riceParamsLen / 4);
				clResidualTasksPtr = openCLCQ.EnqueueMapBuffer(clResidualTasksPinned, true, MapFlags.READ_WRITE, 0, residualTasksLen);
				clBestResidualTasksPtr = openCLCQ.EnqueueMapBuffer(clBestResidualTasksPinned, true, MapFlags.READ_WRITE, 0, bestResidualTasksLen);
				clWindowFunctionsPtr = openCLCQ.EnqueueMapBuffer(clWindowFunctionsPinned, true, MapFlags.READ_WRITE, 0, wndLen);
				clSelectedTasksPtr = openCLCQ.EnqueueMapBuffer(clSelectedTasksPinned, true, MapFlags.READ_WRITE, 0, selectedLen);
				clRiceOutputPtr = openCLCQ.EnqueueMapBuffer(clRiceOutputPinned, true, MapFlags.READ_WRITE, 0, riceLen);
			}
            else
            {
                clSamplesBytes = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, (uint)samplesBufferLen / 2);
				clResidual = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, residualBufferLen);
                clBestRiceParams = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, riceParamsLen / 4);
                clResidualTasks = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, residualTasksLen);
                clBestResidualTasks = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, bestResidualTasksLen);
                clWindowFunctions = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, wndLen);
				clSelectedTasks = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, selectedLen);
				clRiceOutput = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE | MemFlags.ALLOC_HOST_PTR, riceLen);

				clSamplesBytesPtr = openCLCQ.EnqueueMapBuffer(clSamplesBytes, true, MapFlags.READ_WRITE, 0, samplesBufferLen / 2);
				clResidualPtr = openCLCQ.EnqueueMapBuffer(clResidual, true, MapFlags.READ_WRITE, 0, residualBufferLen);
				clBestRiceParamsPtr = openCLCQ.EnqueueMapBuffer(clBestRiceParams, true, MapFlags.READ_WRITE, 0, riceParamsLen / 4);
				clResidualTasksPtr = openCLCQ.EnqueueMapBuffer(clResidualTasks, true, MapFlags.READ_WRITE, 0, residualTasksLen);
				clBestResidualTasksPtr = openCLCQ.EnqueueMapBuffer(clBestResidualTasks, true, MapFlags.READ_WRITE, 0, bestResidualTasksLen);
				clWindowFunctionsPtr = openCLCQ.EnqueueMapBuffer(clWindowFunctions, true, MapFlags.READ_WRITE, 0, wndLen);
				clSelectedTasksPtr = openCLCQ.EnqueueMapBuffer(clSelectedTasks, true, MapFlags.READ_WRITE, 0, selectedLen);
				clRiceOutputPtr = openCLCQ.EnqueueMapBuffer(clRiceOutput, true, MapFlags.READ_WRITE, 0, riceLen);

                //clSamplesBytesPtr = clSamplesBytes.HostPtr;
                //clResidualPtr = clResidual.HostPtr;
                //clBestRiceParamsPtr = clBestRiceParams.HostPtr;
                //clResidualTasksPtr = clResidualTasks.HostPtr;
                //clBestResidualTasksPtr = clBestResidualTasks.HostPtr;
                //clWindowFunctionsPtr = clWindowFunctions.HostPtr;
            }

            clSamples = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, samplesBufferLen);
            clLPCData = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, lpcDataLen);
            clAutocorOutput = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, autocorLen);
			clSelectedTasksSecondEstimate = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, selectedLen);
			clSelectedTasksBestMethod = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, selectedLen);
			if (UseGPUOnly)
            {
                clPartitions = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, partitionsLen);
                clRiceParams = openCLProgram.Context.CreateBuffer(MemFlags.READ_WRITE, riceParamsLen);
            }

            //openCLCQ.EnqueueMapBuffer(clSamplesBytes, true, MapFlags.WRITE, 0, samplesBufferLen / 2);

            clComputeAutocor = openCLProgram.CreateKernel("clComputeAutocor");
			clStereoDecorr = openCLProgram.CreateKernel("clStereoDecorr");
			//cudaChannelDecorr = openCLProgram.CreateKernel("clChannelDecorr");
			clChannelDecorr2 = openCLProgram.CreateKernel("clChannelDecorr2");
			clChannelDecorrX = openCLProgram.CreateKernel("clChannelDecorrX");
			clFindWastedBits = openCLProgram.CreateKernel("clFindWastedBits");
			clComputeLPC = openCLProgram.CreateKernel("clComputeLPC");
			clQuantizeLPC = openCLProgram.CreateKernel("clQuantizeLPC");
			//cudaComputeLPCLattice = openCLProgram.CreateKernel("clComputeLPCLattice");
            clSelectStereoTasks = openCLProgram.CreateKernel("clSelectStereoTasks");
			clEstimateResidual = openCLProgram.CreateKernel("clEstimateResidual");
			clChooseBestMethod = openCLProgram.CreateKernel("clChooseBestMethod");
			if (UseGPUOnly)
			{
				clEncodeResidual = openCLProgram.CreateKernel("clEncodeResidual");
				if (openCLCQ.Device.DeviceType != DeviceType.CPU)
				{
					clCalcPartition = openCLProgram.CreateKernel("clCalcPartition");
					clCalcPartition16 = openCLProgram.CreateKernel("clCalcPartition16");
				}
				clSumPartition = openCLProgram.CreateKernel("clSumPartition");
				clFindRiceParameter = openCLProgram.CreateKernel("clFindRiceParameter");
				clFindPartitionOrder = openCLProgram.CreateKernel("clFindPartitionOrder");
				if (UseGPURice)
				{
					clCalcOutputOffsets = openCLProgram.CreateKernel("clCalcOutputOffsets");
					clRiceEncoding = openCLProgram.CreateKernel("clRiceEncoding");
				}
			}

			samplesBuffer = new int[MAX_CHANNELSIZE * channelsCount];
			outputBuffer = new byte[max_frame_size * MAX_FRAMES + 1];
			frame = new FlacFrame(channelsCount);
			frame.writer = new BitWriter(outputBuffer, 0, outputBuffer.Length);

			if (writer._settings.DoVerify)
			{
				verify = new FlakeReader(new AudioPCMConfig((int)bits_per_sample, channels, 44100));
				verify.DoCRC = false;
			}
		}
Exemple #8
0
        public Core(int Nxp,int Nyp, int Nzp, int Ntm, double Bbeta, double Flux)
        {
            Nx = Nxp; Ny = Nyp; Nz = Nzp; Nt = Ntm; betagauge = (floattype)Bbeta; flux = (floattype)Flux;
            N = Nx * Ny * Nz * Nt; Nspace = Nx * Ny * Nz;

            string strforcompiler =  "-D Nt=" + Nt.ToString() + " -D Nxyz=" + (Nx * Ny * Nz).ToString() + " -D Nxy=" + (Nx*Ny).ToString() +
                                            " -D Nx="+(Nx).ToString()+" -D Ny="+(Ny).ToString()+" -D Nz="+(Nz).ToString();
            strforcompiler += typeof(floattype) == typeof(double) ? " -D floattype=double -D floattype2=double2 -D floattype4=double4" :
                                                                " -D floattype=float -D floattype2=float2 -D floattype4=float4";
            strforcompiler += " -D phi=" + flux.ToString().Replace(',', '.') + " -D KAPPA=" + kappa.ToString().Replace(',', '.');
            string fp64support = "#pragma OPENCL EXTENSION  cl_khr_fp64 : enable\n";

            Plocalsize = AdjustLocalSize(Nspace);
            Slocalsize = AdjustLocalSize(N / 2);
            XhermYlocalsize = AdjustLocalSize(4 * N);

               // Plocalsize = 16; Slocalsize = 16;

            PNumGroups = Nx * Ny * Nz / Plocalsize;
            SNumGroups = N/2 / Slocalsize;
            XhermYNumGroups = 4*4*N / XhermYlocalsize;
            BufferLength = N * 4 * 9 * 2 * sizeof(floattype);
            SeedBufLen = N * sizeof(Int32)/2 * 4;

            AllocBuffers();

            openCLPlatform = OpenCL.GetPlatform(0);
            openCLDevices = openCLPlatform.QueryDevices(DeviceType.ALL);
            openCLContext = openCLPlatform.CreateDefaultContext();
            openCLCQ = openCLContext.CreateCommandQueue(openCLDevices[0], CommandQueueProperties.PROFILING_ENABLE);
            MyKernelProgram = openCLContext.CreateProgramWithSource(
                (typeof(floattype)==typeof(double)?fp64support:"") + File.ReadAllText("MyKernel.cl")+File.ReadAllText("dirak_mul.cl"));
            try
            {
                MyKernelProgram.Build(openCLDevices, strforcompiler, null, IntPtr.Zero);
            }
            catch (OpenCLException)
            {
                string buildLog = MyKernelProgram.GetBuildLog(openCLDevices[0]);
                MessageBox.Show(buildLog, "Build error(64 bit debug sessions in vs2008 always fail like this - debug in 32 bit or use vs2010)");
                //  Application.Exit();
            }
            MyKernelKernel = MyKernelProgram.CreateKernel("MyKernel");
            PReductionKernel = MyKernelProgram.CreateKernel("PLoop");
            SReductionKernel = MyKernelProgram.CreateKernel("CalcS");
            DiralMulKernel = MyKernelProgram.CreateKernel("dirakMatrMul");
            FillWithKernel = MyKernelProgram.CreateKernel("FillWith");
            FillLinkWithKernel = MyKernelProgram.CreateKernel("FillLinkWith");
            FillWithRandomKernel = MyKernelProgram.CreateKernel("FillWithRandom");
            AXPYKernel = MyKernelProgram.CreateKernel("AXPY");
            XhermYKernel = MyKernelProgram.CreateKernel("XhermY");
            BackupLinkKernel = MyKernelProgram.CreateKernel("BackupLink");
            RestoreLinkKernel = MyKernelProgram.CreateKernel("RestoreLink");

            SeedMem = openCLContext.CreateBuffer((MemFlags)((long)MemFlags.READ_WRITE), SeedBufLen, IntPtr.Zero);
            LinkMem = openCLContext.CreateBuffer((MemFlags)((long)MemFlags.READ_WRITE), BufferLength, IntPtr.Zero);
            PGroupMem = openCLContext.CreateBuffer((MemFlags)((long)MemFlags.READ_WRITE), floatsize * PNumGroups, IntPtr.Zero);
            PResMem = openCLContext.CreateBuffer((MemFlags)((long)MemFlags.READ_WRITE), floatsize, IntPtr.Zero);
            SGroupMem = openCLContext.CreateBuffer((MemFlags)((long)MemFlags.READ_WRITE), floatsize * SNumGroups, IntPtr.Zero);
            SResMem = openCLContext.CreateBuffer((MemFlags)((long)MemFlags.READ_WRITE), floatsize, IntPtr.Zero);

            XhermYGroupMem = openCLContext.CreateBuffer((MemFlags)((long)MemFlags.READ_WRITE), floatsize * 2*XhermYNumGroups, IntPtr.Zero);
            XhermYresMem = openCLContext.CreateBuffer((MemFlags)((long)MemFlags.READ_WRITE), floatsize * 2, IntPtr.Zero);
            XhermYrespointer = System.Runtime.InteropServices.Marshal.AllocHGlobal(floatsize * 2);

            SeedVectorMem = openCLContext.CreateBuffer((MemFlags)((long)MemFlags.READ_WRITE), SeedVectorBuf.Length * sizeof(int), IntPtr.Zero);
            StorageMem = openCLContext.CreateBuffer((MemFlags)((long)MemFlags.READ_WRITE), linksize, IntPtr.Zero);
            dSmem = openCLContext.CreateBuffer((MemFlags)((long)MemFlags.READ_WRITE), floatsize, IntPtr.Zero);
            dSpointer = System.Runtime.InteropServices.Marshal.AllocHGlobal(floatsize);

            MyKernelKernel.SetArg(0, (byte)EvenOdd);
            MyKernelKernel.SetArg(1, (floattype)betagauge);
            MyKernelKernel.SetArg(2, (floattype)flux);
            MyKernelKernel.SetArg(3, SeedMem);
            MyKernelKernel.SetArg(4, LinkMem);

            PReductionKernel.SetArg(0, LinkMem);
            PReductionKernel.SetArg(1, PGroupMem);
            PReductionKernel.SetArg(2, PResMem);
            IntPtr ptr = new IntPtr(Plocalsize * floatsize);
            PReductionKernel.SetArg(3, ptr, IntPtr.Zero);

            SReductionKernel.SetArg(0, LinkMem);
            SReductionKernel.SetArg(1, SGroupMem);
            SReductionKernel.SetArg(2, SResMem);
            IntPtr ptr1 = new IntPtr(Slocalsize * floatsize);
            SReductionKernel.SetArg(3, ptr1, IntPtr.Zero);

            XhermYKernel.SetArg(2, XhermYresMem);
            XhermYKernel.SetArg(3, XhermYGroupMem);
            XhermYKernel.SetArg(4, new IntPtr(XhermYlocalsize*floatsize*2),IntPtr.Zero);

            openCLCQ.EnqueueWriteBuffer(SeedMem, true, 0, SeedBufLen, ipseed);
            openCLCQ.EnqueueWriteBuffer(LinkMem, true, 0, BufferLength, ip);
            openCLCQ.EnqueueWriteBuffer(SeedVectorMem, true, 0, SeedVectorBuf.Length*sizeof(int), ipseedvector);
            rhat0 = new Vector();
            //init BICGStab vectors
            phi = new Vector();

            r0 = new Vector();

            //rprev = new Vector();
            pi = new Vector();
            vi = new Vector();
            t = new Vector();
            s = new Vector();
               // xprev = new Vector();

               // vprev = new Vector();
               // pprev = new Vector();

            temp = new Vector();

            ri = new Vector();

            x = new Vector();

            //for fermion update

            chi = new Vector();

            CalculateS();
            double s1 = S[0];
            BackupLink(0, 0,1, 0, 1);
            CalculateS();
            double s2 = S[0];
            RestoreLink(0, 0, 1, 0, 1);
            CalculateS();
            double s3 = S[0];

            //MessageBox.Show(s1.ToString() + s2.ToString() + s3.ToString());
        }
Exemple #9
0
 private void InitializeOpenCL()
 {
     if (OpenCL.NumberOfPlatforms == 0){
         MessageBox.Show("OpenCL is not supported on your system!");
         Application.Exit();
     }
     manager = new OpenCLManager();
     manager.AttemptUseBinaries = true;
     manager.AttemptUseSource = true;
     manager.RequireImageSupport = false;
     manager.BuildOptions = "";
     manager.CreateDefaultContext(0, DeviceType.ALL);
     // Compiling OpenCL code
     program = manager.CompileSource(Properties.Resources.DVR);
     kernel = program.CreateKernel("DVR");
 }
Exemple #10
0
 public void BuildOCLSource(string source)
 {
     oclProgram = oclContext.CreateProgramWithSource(source);
     oclProgram.Build();
     FilterKernel = oclProgram.CreateKernel("FilterImage");
 }
Exemple #11
0
        /// <summary>
        /// Create a OpenCLManager, configure it, and then create a context using all devices in platform 0,
        /// Once the context is up and running we compile our source file "OpenCLFunctions.cl"
        /// The Helper automatically compiles and creates kernels.
        /// We can then extract named kernels using the GetKernel method.
        /// 
        /// For more advanced scenarios, one might use the functions in the Platform class
        /// to query devices, create contexts etc. Platforms can be enumerated using
        /// for( int i=0; i<OpenCL.NumberofPlatforms; i++ )
        ///     Platform p = OpenCL.GetPlatform(i);
        /// </summary>
        private void InitializeOpenCL()
        {
            if (OpenCL.NumberOfPlatforms == 0)
            {
                MessageBox.Show("OpenCL not available");
                Application.Exit();
            }

            OCLMan = new OpenCLManager();
            // Attempt to save binaries after compilation, as well as load precompiled binaries
            // to avoid compilation. Usually you'll want this to be true.
            OCLMan.AttemptUseBinaries = true;
            // Attempt to compile sources. This should probably be true for almost all projects.
            // Setting it to false means that when you attempt to compile "mysource.cl", it will
            // only scan the precompiled binary directory for a binary corresponding to a source
            // with that name. There's a further restriction that the compiled binary also has to
            // use the same Defines and BuildOptions
            OCLMan.AttemptUseSource = true;
            // Binary and source paths
            // This is where we store our sources and where compiled binaries are placed
            OCLMan.BinaryPath = @"OpenCL\bin";
            OCLMan.SourcePath = @"OpenCL\src";
            // If true, RequireImageSupport will filter out any devices without image support
            // In this project we don't need image support though, so we set it to false
            OCLMan.RequireImageSupport = false;
            // The Defines string gets prepended to any and all sources that are compiled
            // and serve as a convenient way to pass configuration information to the compilation process
            OCLMan.Defines = "#define MyCompany_MyProject_Define 1";
            // The BuildOptions string is passed directly to clBuild and can be used to do debug builds etc
            OCLMan.BuildOptions = "";

            OCLMan.CreateDefaultContext(0, DeviceType.ALL);

            OCLProgram = OCLMan.CompileFile("OpenCLFunctions.cl");

            for (int i = 0; i < OCLMan.Context.Devices.Length; i++)
                comboBoxDeviceSelector.Items.Add(OCLMan.Context.Devices[i].Vendor+":"+OCLMan.Context.Devices[i].Name);
            comboBoxDeviceSelector.SelectedIndex = 0;

            CrossFadeKernel = OCLProgram.CreateKernel("CrossFade");
        }
        static void Main(string[] args)
        {
            for (int i = 0; i < OpenCL.NumberOfPlatforms; ++i)
            {
                Platform clPlatformTemp = OpenCL.GetPlatform(i);
                Console.WriteLine("Platform {0} -> {1}, {2}",
                                  i, clPlatformTemp.Vendor, clPlatformTemp.Name);

                Device[] clDevicesTemp = clPlatformTemp.QueryDevices(DeviceType.ALL);
                foreach (Device clDeviceTemp in clDevicesTemp)
                {
                    Console.WriteLine("-----> {0}, {1}, {2} Bytes, {3}",
                                      clDeviceTemp.Name, clDeviceTemp.DeviceType,
                                      clDeviceTemp.GlobalMemSize, clDeviceTemp.OpenCL_C_Version);
                }
            }


            Platform clPlatform = null;
            Device   clDevice   = null;

            for (int i = 0; i < OpenCL.NumberOfPlatforms; ++i)
            {
                clPlatform = OpenCL.GetPlatform(i);
                if (!clPlatform.Name.Contains("AMD") && !clPlatform.Name.Contains("NVIDIA") && !clPlatform.Name.Contains("INTEL"))
                {
                    continue;
                }


                Device[] clDevices = clPlatform.QueryDevices(DeviceType.GPU);

                clDevice = clDevices[0];

                break;
            }

            Console.WriteLine();

            Context clContext = null;

            clContext = clPlatform.CreateDefaultContext();

            CommandQueue clCommandQueue = null;

            clCommandQueue = clContext.CreateCommandQueue(clDevice, CommandQueueProperties.NONE);


            int[] ArrayA = { 1, 2 };
            int[] ArrayB = { 2, 3 };
            int[] ArrayC = new int[2];

            int N = 100;

            float[] array = new float[N];


            for (int i = 0; i < N; ++i)
            {
                array[i] = 1.0f * i / N;
            }


            GCHandle arrayHandle;

            arrayHandle = GCHandle.Alloc(array, GCHandleType.Pinned);

            GCHandle ArrayAHandle;

            ArrayAHandle = GCHandle.Alloc(array, GCHandleType.Pinned);
            GCHandle ArrayBHandle;

            ArrayBHandle = GCHandle.Alloc(array, GCHandleType.Pinned);
            GCHandle ArrayCHandle;

            ArrayCHandle = GCHandle.Alloc(array, GCHandleType.Pinned);



            Mem arrayBuffer = null;

            arrayBuffer = clContext.CreateBuffer(MemFlags.COPY_HOST_PTR,
                                                 array.Length * sizeof(float), arrayHandle.AddrOfPinnedObject());


            Mem ArrayABuffer = null;

            ArrayABuffer = clContext.CreateBuffer(MemFlags.COPY_HOST_PTR,
                                                  ArrayA.Length * sizeof(int), ArrayAHandle.AddrOfPinnedObject());

            Mem ArrayBBuffer = null;

            ArrayBBuffer = clContext.CreateBuffer(MemFlags.COPY_HOST_PTR,
                                                  ArrayB.Length * sizeof(int), ArrayBHandle.AddrOfPinnedObject());

            Mem ArrayCBuffer = null;

            ArrayCBuffer = clContext.CreateBuffer(MemFlags.COPY_HOST_PTR,
                                                  ArrayC.Length * sizeof(int), ArrayCHandle.AddrOfPinnedObject());

            //cos


            clCommandQueue.EnqueueReadBuffer(arrayBuffer, true, 0,
                                             array.Length * sizeof(float), arrayHandle.AddrOfPinnedObject());

            OpenCLNet.Program clProgram = null;
            clProgram = clContext.CreateProgramWithSource(File.ReadAllText("openCLkernels.cl"));
            clProgram.Build();

            Kernel clKernel = null;

            clKernel = clProgram.CreateKernel("Multiply");
            clKernel.SetArg(0, arrayBuffer);
            clKernel.SetArg(1, 25);

            Kernel clKernel2 = null;

            clKernel2 = clProgram.CreateKernel("Add");
            clKernel2.SetArg(0, ArrayABuffer);
            clKernel2.SetArg(1, ArrayBBuffer);
            clKernel2.SetArg(2, ArrayCBuffer);


            clCommandQueue.EnqueueNDRangeKernel(clKernel, 1, null, new int[] { N }, null);

            clCommandQueue.EnqueueReadBuffer(arrayBuffer, true, 0,
                                             array.Length * sizeof(float), arrayHandle.AddrOfPinnedObject());


            clCommandQueue.EnqueueNDRangeKernel(clKernel2, 1, null, new int[] { 2 }, null);
            clCommandQueue.EnqueueReadBuffer(ArrayABuffer, true, 0,
                                             ArrayA.Length * sizeof(int), ArrayAHandle.AddrOfPinnedObject());
            clCommandQueue.EnqueueReadBuffer(ArrayBBuffer, true, 0,
                                             ArrayB.Length * sizeof(int), ArrayBHandle.AddrOfPinnedObject());
            clCommandQueue.EnqueueReadBuffer(ArrayCBuffer, true, 0,
                                             ArrayC.Length * sizeof(int), ArrayCHandle.AddrOfPinnedObject());


            //    for (int i = 0; i < N; ++i)
            //      Console.Write("{0} ", array[i]);


            Console.WriteLine();
            Console.WriteLine();
            for (int i = 0; i < 2; i++)
            {
                Console.WriteLine("{0}", ArrayC[i]);
            }
        }