//--------------------//

        #region Quad
        /// <summary>
        /// Creates a new <see cref="Mesh"/> representing a textured 2D quad.
        /// </summary>
        /// <param name="device">The <see cref="Device"/> to create the <see cref="Mesh"/> in.</param>
        /// <param name="width">The width of the quad.</param>
        /// <param name="height">The height of the quad.</param>
        public static Mesh Quad(Device device, float width, float height)
        {
            #region Sanity checks
            if (device == null)
            {
                throw new ArgumentNullException(nameof(device));
            }
            #endregion

            var vertexes = new[]
            {
                new PositionTextured(new Vector3(-width / 2, -height / 2, 0), 0, 0),
                new PositionTextured(new Vector3(-width / 2, height / 2, 0), 0, 1),
                new PositionTextured(new Vector3(width / 2, -height / 2, 0), 1, 0),
                new PositionTextured(new Vector3(width / 2, height / 2, 0), 1, 1)
            };
            short[] indexes = { 0, 1, 3, 3, 2, 0 };

            var mesh = new Mesh(device, indexes.Length / 3, vertexes.Length, MeshFlags.Managed, PositionTextured.Format);
            BufferHelper.WriteVertexBuffer(mesh, vertexes);
            BufferHelper.WriteIndexBuffer(mesh, indexes);
            MeshHelper.GenerateNormalsAndTangents(device, ref mesh, false);

            return(mesh);
        }
        /// <summary>
        /// Creates a model of a textured round disc with a hole in the middle.
        /// </summary>
        /// <param name="device">The <see cref="Device"/> to create the mesh in.</param>
        /// <param name="radiusInner">The radius of the inner circle of the ring.</param>
        /// <param name="radiusOuter">The radius of the outer circle of the ring.</param>
        /// <param name="height">The height of the ring.</param>
        /// <param name="segments">The number of segments the ring shall consist of.</param>
        public static Mesh Disc(Device device, float radiusInner, float radiusOuter, float height, int segments)
        {
            #region Sanity checks
            if (device == null)
            {
                throw new ArgumentNullException(nameof(device));
            }
            #endregion

            const float tuInner = 0, tuOuter = 1;

            Log.Info("Generate predefined model: Disc");
            var posInner = new Vector3(radiusInner, 0, 0);
            var posOuter = new Vector3(radiusOuter, 0, 0);

            #region Generate vertexes
            int vertCount = 0;
            var step      = (float)(Math.PI * 2 / segments);
            var vertexes  = new PositionTextured[segments * 4];

            for (int i = 0; i < segments; i++)
            {
                vertexes[vertCount++] = new PositionTextured(posInner.X, posInner.Y - height / 2, posInner.Z, tuInner, 0);
                vertexes[vertCount++] = new PositionTextured(posInner.X, posInner.Y + height / 2, posInner.Z, tuInner, 0);
                vertexes[vertCount++] = new PositionTextured(posOuter.X, posOuter.Y - height / 2, posOuter.Z, tuOuter, 0);
                vertexes[vertCount++] = new PositionTextured(posOuter.X, posOuter.Y + height / 2, posOuter.Z, tuOuter, 0);

                // Increment rotation
                posInner = Vector3.TransformCoordinate(posInner, Matrix.RotationY(step));
                posOuter = Vector3.TransformCoordinate(posOuter, Matrix.RotationY(step));
            }
            #endregion

            #region Generate indexes
            int indexCount = 0;
            var indexes    = new short[segments * 24];

            for (int i = 0; i < segments; i++)
            {
                short innerBottom1 = (short)(i * 4), innerTop1 = (short)(i * 4 + 1);
                short outerBottom1 = (short)(i * 4 + 2), outerTop1 = (short)(i * 4 + 3);
                short innerBottom2 = (short)(i * 4 + 4), innerTop2 = (short)(i * 4 + 5);
                short outerBottom2 = (short)(i * 4 + 6), outerTop2 = (short)(i * 4 + 7);

                if (innerBottom2 >= vertexes.Length)
                {
                    innerBottom2 -= (short)vertexes.Length;
                }
                if (innerTop2 >= vertexes.Length)
                {
                    innerTop2 -= (short)vertexes.Length;
                }
                if (outerBottom2 >= vertexes.Length)
                {
                    outerBottom2 -= (short)vertexes.Length;
                }
                if (outerTop2 >= vertexes.Length)
                {
                    outerTop2 -= (short)vertexes.Length;
                }

                // Bottom 2 triangles
                indexes[indexCount++] = innerBottom1;
                indexes[indexCount++] = innerBottom2;
                indexes[indexCount++] = outerBottom2;
                indexes[indexCount++] = innerBottom1;
                indexes[indexCount++] = outerBottom2;
                indexes[indexCount++] = outerBottom1;

                // Top 2 triangles
                indexes[indexCount++] = innerTop1;
                indexes[indexCount++] = outerTop2;
                indexes[indexCount++] = innerTop2;
                indexes[indexCount++] = innerTop1;
                indexes[indexCount++] = outerTop1;
                indexes[indexCount++] = outerTop2;

                // Inner 2 triangles
                indexes[indexCount++] = innerTop1;
                indexes[indexCount++] = innerBottom2;
                indexes[indexCount++] = innerBottom1;
                indexes[indexCount++] = innerTop1;
                indexes[indexCount++] = innerTop2;
                indexes[indexCount++] = innerBottom2;

                // Outer 2 triangles
                indexes[indexCount++] = outerBottom1;
                indexes[indexCount++] = outerBottom2;
                indexes[indexCount++] = outerTop1;
                indexes[indexCount++] = outerBottom2;
                indexes[indexCount++] = outerTop2;
                indexes[indexCount++] = outerTop1;
            }
            #endregion

            var mesh = new Mesh(device, indexes.Length / 3, vertexes.Length, MeshFlags.Managed, PositionTextured.Format);
            BufferHelper.WriteVertexBuffer(mesh, vertexes);
            BufferHelper.WriteIndexBuffer(mesh, indexes);
            MeshHelper.GenerateNormalsAndTangents(device, ref mesh, false);

            return(mesh);
        }
        /// <summary>
        /// Creates a new <see cref="Mesh"/> representing a textured sphere with spherical mapping.
        /// </summary>
        /// <param name="device">The <see cref="Device"/> to create the mesh in</param>
        /// <param name="radius">The radius of the sphere.</param>
        /// <param name="slices">The number of vertical slices to divide the sphere into.</param>
        /// <param name="stacks">The number of horizontal stacks to divide the sphere into.</param>
        /// <remarks>The sphere is formed like the one created by <see cref="Mesh.CreateSphere"/>.</remarks>
        public static Mesh Sphere(Device device, float radius, int slices, int stacks)
        {
            #region Sanity checks
            if (device == null)
            {
                throw new ArgumentNullException(nameof(device));
            }
            if (slices <= 0)
            {
                throw new ArgumentOutOfRangeException(nameof(slices));
            }
            if (stacks <= 0)
            {
                throw new ArgumentOutOfRangeException(nameof(stacks));
            }
            #endregion

            int numVertexes = (slices + 1) * (stacks + 1);
            int numFaces    = slices * stacks * 2;
            int indexCount  = numFaces * 3;

            var mesh = new Mesh(device, numFaces, numVertexes, MeshFlags.Managed, PositionNormalTextured.Format);

            #region Build sphere vertexes
            var vertexes  = new PositionNormalTextured[mesh.VertexCount];
            int vertIndex = 0;
            for (int slice = 0; slice <= slices; slice++)
            {
                float alphaY = (float)slice / slices * (float)Math.PI * 2.0f; // Angle around Y-axis
                for (int stack = 0; stack <= stacks; stack++)
                {
                    if (slice == slices)
                    {
                        vertexes[vertIndex] = vertexes[stack];
                    }
                    else
                    {
                        var   pnt    = new PositionNormalTextured();
                        float alphaZ = ((stack - stacks * 0.5f) / stacks) * (float)Math.PI * 1.0f; // Angle around Z-axis
                        pnt.X  = (float)(Math.Cos(alphaY) * radius) * (float)Math.Cos(alphaZ);
                        pnt.Z  = (float)(Math.Sin(alphaY) * radius) * (float)Math.Cos(alphaZ);
                        pnt.Y  = (float)(Math.Sin(alphaZ) * radius);
                        pnt.Nx = pnt.X / radius;
                        pnt.Ny = pnt.Y / radius;
                        pnt.Nz = pnt.Z / radius;
                        pnt.Tv = 0.5f - (float)(Math.Asin(pnt.Y / radius) / Math.PI);
                        vertexes.SetValue(pnt, vertIndex);
                    }
                    vertexes[vertIndex++].Tu = (float)slice / slices;
                }
            }
            #endregion

            BufferHelper.WriteVertexBuffer(mesh, vertexes);

            #region Build index buffer
            var indexes = new short[indexCount];
            int i       = 0;
            for (short x = 0; x < slices; x++)
            {
                var leftVertex  = (short)((stacks + 1) * x);
                var rightVertex = (short)(leftVertex + stacks + 1);
                for (int y = 0; y < stacks; y++)
                {
                    indexes[i++] = rightVertex;
                    indexes[i++] = leftVertex;
                    indexes[i++] = (short)(leftVertex + 1);
                    indexes[i++] = rightVertex;
                    indexes[i++] = (short)(leftVertex + 1);
                    indexes[i++] = (short)(rightVertex + 1);
                    leftVertex++;
                    rightVertex++;
                }
            }
            #endregion

            BufferHelper.WriteIndexBuffer(mesh, indexes);

            return(mesh);
        }