Exemple #1
0
        private static void CollectTrainingExamples(OCR.ShapeNet ShapeNet, List <Example> Examples)
        {
            List <String> Filenames = new List <string>(0);
            Example       newExample;
            int           NumberExamples = ShapeNet.lNumberExamples;


            //init learning data
            //collect all available examples
            for (int lIndex = 0; lIndex < ShapeNet.ShapeList.Count; lIndex++)
            {
                Filenames.Clear();

                MakeExampleList(Filenames, ShapeNet.ShapeList[lIndex].SampleFolder);

                if (Filenames.Count > 0)
                {
                    for (long lIndex2 = 0; lIndex2 < NumberExamples; lIndex2++)
                    {
                        newExample          = new Example();
                        newExample.Filename = Filenames[_r.Next(Filenames.Count)];
                        newExample.ShapeId  = lIndex;

                        Examples.Add(newExample);
                    }
                }
            }
        }
Exemple #2
0
        private void CreateNetwork(OCR.ShapeNet ShapeNet)
        {
            ShapeNet.NeuralNetwork.ClearNetwork();

            int OutputNodes = ShapeNet.ShapeList.Count;
            int Layer1Nodes = Convert.ToInt32(txtNodesLayer1.Text);
            int Layer2Nodes = Convert.ToInt32(txtNodesLayer2.Text);

            //fill the network with nodes
            for (int lIndex = 0; lIndex < 48; lIndex++)
            {
                ShapeNet.NeuralNetwork.AddNode(0, eNeuralNodeType.eInput);
            }

            for (int lIndex = 0; lIndex < Layer1Nodes; lIndex++)
            {
                ShapeNet.NeuralNetwork.AddNode(1, eNeuralNodeType.eHidden);
            }

            for (int lIndex = 0; lIndex < Layer2Nodes; lIndex++)
            {
                ShapeNet.NeuralNetwork.AddNode(2, eNeuralNodeType.eHidden);
            }

            for (int lIndex = 0; lIndex < OutputNodes; lIndex++)
            {
                ShapeNet.NeuralNetwork.AddNode(3, eNeuralNodeType.eOutput);
            }

            ShapeNet.NeuralNetwork.InitNetworkForLearning();
        }
Exemple #3
0
        /// <summary>
        /// This function checks if this component is recognised as a connected component, meaning that
        /// it may consist of multiple characters.
        /// Rules
        /// 1. Recognised as connected
        /// 2. Low probability in recognition
        /// </summary>
        public void CheckAndRepairConnected(ShapeNet ShapeNet)
        {
            if (CouldBeConnected)
            {
                RecogniseComponent.NumberConnectedComponents++;

                if (DebugTrace.DebugTrace.ApplySplitOnConnectedComponents)
                {
                    Split(ShapeNet);
                }
            }
        }
Exemple #4
0
        private void FillListView(OCR.ShapeNet SelectedShapeNet)
        {
            lvShapes.SelectedItems.Clear();
            lvShapes.ItemsSource = SelectedShapeNet.ShapeList;
            lvShapes.Items.Refresh();



            //foreach (OCR.ShapeListEntry Shape in SelectedShapeNet.ShapeList)
            //{
            //    lvShapes.Items.Add(Shape);
            //}
        }
        /// <summary>
        /// This functions 'recognises' the given compontent by running its features through
        /// a neural network.
        /// </summary>
        /// <param name="Component"></param>
        public static void RecogniseWithoutConnectedRepair(ShapeNet ShapeNet, PageComponent Component)
        {
            sNeuralOutput Result = new sNeuralOutput();

            ShapeNet.NeuralNetwork.ComputeOutput(RecogniseComponent.CalculateNetworkInput(Component), Result);

            for (int i = 0; i < Result.fOutputs.Count; i++)
            {
                if (Result.fOutputs[i] >= 0.01)
                {
                    Component.AddRecognitionResult(Result.fOutputs[i], ShapeNet.ShapeList[i].Shape);
                }
            }
        }
Exemple #6
0
        private static void CreateTrainingData(OCR.ShapeNet ShapeNet, List <Example> Examples)
        {
            NeuralNetwork.LearningData oLearningData;
            OCR.PageComponent          PageComponent;
            sNeuralInput newInput;

            foreach (Example Example in Examples)
            {
                PageComponent = new OCR.PageComponent();
                PageComponent.LoadBitmap(Example.Filename);

                ExtractFeatures.ExecuteExtractFeatures(PageComponent, true);

                PageComponent.Position.Ascent  = ShapeNet.ShapeList[Example.ShapeId].Position.Ascent;
                PageComponent.Position.Height  = ShapeNet.ShapeList[Example.ShapeId].Position.Height;
                PageComponent.Position.Center  = ShapeNet.ShapeList[Example.ShapeId].Position.Center;
                PageComponent.Position.Base    = ShapeNet.ShapeList[Example.ShapeId].Position.Base;
                PageComponent.Position.Descent = ShapeNet.ShapeList[Example.ShapeId].Position.Descent;

                //Fill the
                oLearningData = new NeuralNetwork.LearningData();

                oLearningData.oInput.fInputs.Clear();
                oLearningData.oOutput.fOutputs.Clear();

                newInput             = RecogniseComponent.CalculateNetworkInput(PageComponent);
                oLearningData.oInput = newInput;

                for (long lIndex2 = 0; lIndex2 < ShapeNet.ShapeList.Count; lIndex2++)
                {
                    if (Example.ShapeId == lIndex2)
                    {
                        oLearningData.oOutput.fOutputs.Add(1);
                    }
                    else
                    {
                        oLearningData.oOutput.fOutputs.Add(0);
                    }
                }

                ShapeNet.NeuralNetwork.AddSituation(oLearningData);
            }

            ShapeNet.NeuralNetwork.ComputeInputRatios();
        }
        /// <summary>
        /// This functions 'recognises' the given compontent by running its features through
        /// a neural network.
        /// </summary>
        /// <param name="Component"></param>
        public static void Recognise(ShapeNet ShapeNet, PageComponent Component)
        {
            RecogniseWithoutConnectedRepair(ShapeNet, Component);

            Component.CheckAndRepairConnected(ShapeNet);
        }
Exemple #8
0
 private void FillShapeList(OCR.ShapeNet SelectedShapeNet)
 {
     lstShapes.UnselectAll();
     lstShapes.ItemsSource = SelectedShapeNet.ShapeList;
     lstShapes.Items.Refresh();
 }
Exemple #9
0
        public void DoFillFileList(string Filter, OCR.ShapeNet ShapeNet)
        {
            try
            {
                if (ShapeFiles == null)
                {
                    ShapeFiles = new List <ShapeFileList>(0);
                }

                if (ShapeFiles.Count == 0)
                {
                    DirectoryInfo di    = new DirectoryInfo("D:\\OCR\\Images\\");
                    FileInfo[]    Files = di.GetFiles("*_org.bmp");

                    foreach (FileInfo fi in Files)
                    {
                        if (Filter.Length > 0)
                        {
                            String            Filename;
                            RecognitionResult MostLikelyShape;

                            // OCR.ShapeNet Shapenet = new OCR.ShapeNet();
                            PageComponent Component = new PageComponent();

                            //Get the selected item
                            Filename = fi.Name.ToString();

                            //Load the image
                            Component.LoadBitmap(fi.FullName.ToString());

                            //Extract features and recognize
                            ExtractFeatures.ExecuteExtractFeatures(Component, true);
                            RecogniseComponent.Recognise(ShapeNet, Component);

                            //Fill the recognition list
                            MostLikelyShape             = new RecognitionResult();
                            MostLikelyShape.Probability = 0;

                            foreach (RecognitionResult Result in Component.RecognitionResults)
                            {
                                if (Result.Probability > MostLikelyShape.Probability)
                                {
                                    MostLikelyShape = Result;
                                }
                            }

                            //Add ShapeFile to cache
                            ShapeFileList ShapeFile;

                            ShapeFile.Shape = MostLikelyShape.Content;
                            ShapeFile.File  = fi.Name.ToString();

                            ShapeFiles.Add(ShapeFile);

                            //Add file to filelist
                            if (MostLikelyShape.Content == Filter)
                            {
                                bwFileList.ReportProgress(0, fi.Name.ToString());
                            }
                        }
                        else
                        {
                            bwFileList.ReportProgress(0, fi.Name.ToString());
                        }
                    }
                }
                else
                {
                    foreach (ShapeFileList ShapeFile in ShapeFiles)
                    {
                        if (Filter.Length == 0)
                        {
                            bwFileList.ReportProgress(0, ShapeFile.File);
                        }
                        else
                        {
                            if (Filter == ShapeFile.Shape)
                            {
                                bwFileList.ReportProgress(0, ShapeFile.File);
                            }
                        }
                    }
                }
            }
            catch (Exception e)
            {
                Console.WriteLine("Exception caught: " + e.Message);
                Console.WriteLine("  In: " + e.StackTrace);
            }
        }
Exemple #10
0
        /// <summary>
        /// This functions splits a character in multiple components. Used for splitting connected characters
        /// </summary>
        public void Split(ShapeNet ShapeNet)
        {
            List <int> SplitLines;

            //Step 1: Get the position for possible splits
            SplitLines = SplitDeterminePositions();

            if (SplitLines.Count == 0)
            {
                return;
            }

            RecognitionResults.Clear();

            //Step 2: Find the combination of the best (highest scores) recognised components
            List <PageComponent> Components = new List <PageComponent>(0);
            PageComponent        newComponent;
            PageComponent        prevComponent;
            Rectangle            SplitArea;
            int start, end;

            SplitLines.Insert(0, 0);
            SplitLines.Add(Width - 1);

            start = 0;
            end   = 1;

            while (end < SplitLines.Count)
            {
                SplitArea = new Rectangle(SplitLines[start] + 1, 0, SplitLines[end] - SplitLines[start] - 2, Height);

                if (SplitArea.Width > 0 && SplitArea.Height > 0)
                {
                    while (NumberPixelsOnRow(BinaryBytes, SplitArea, 0, 0) == 0)
                    {
                        SplitArea.Y      = SplitArea.Y + 1;
                        SplitArea.Height = SplitArea.Height - 1;
                    }

                    while (NumberPixelsOnRow(BinaryBytes, SplitArea, SplitArea.Height - 1, 0) == 0)
                    {
                        SplitArea.Height = SplitArea.Height - 1;
                    }

                    newComponent = PartialCopy(SplitArea);

                    ExtractFeatures.ExecuteExtractFeatures(newComponent, false);
                    RecogniseComponent.RecogniseWithoutConnectedRepair(ShapeNet, newComponent);

                    if (Components.Count > 0 && end - start > 1)
                    {
                        prevComponent = Components.Last();

                        if (prevComponent.ContentProbability < newComponent.ContentProbability && newComponent.Content != "connected" && newComponent.Content != "garbage")
                        {
                            Components.Remove(prevComponent);
                            Components.Add(newComponent);
                        }
                        else
                        {
                            start = end - 1;
                            end--;
                        }
                    }
                    else
                    {
                        Components.Add(newComponent);
                    }
                }
                end++;
            }

            //Add the new recognition result
            RecognitionResult newResult;

            newResult             = new RecognitionResult();
            newResult.Content     = "";
            newResult.Probability = 0;

            foreach (PageComponent Component in Components)
            {
                newResult.Content     += Component.Content;
                newResult.Probability += Component.ContentProbability;
            }

            newResult.Probability = newResult.Probability / Components.Count;

            RecognitionResults.Add(newResult);

            //Save a copy of the image to the disc
            if (DebugTrace.DebugTrace.TraceFeatures)
            {
                String ComponentID = "000000" + ID;
                ComponentID = ComponentID.Substring(ComponentID.Length - 6);

                foreach (int SplitLine in SplitLines)
                {
                    int pointer = SplitLine;

                    for (int y = 0; y < Height; y++)
                    {
                        if (BinaryBytes[SplitLine, y] == 0xFF)
                        {
                            BinaryBytes[SplitLine, y] = 0x10;
                        }
                        pointer += Stride;
                    }
                }

                Bitmap Bitmap   = DebugTrace.DebugTrace.CreateBitmapFromByteArray(BinaryBytes, new Size(Width, Height));
                String Filename = DebugTrace.DebugTrace.TraceFeatureFolder + "image_" + ComponentID + "_split.bmp";
                Bitmap.Save(Filename);
            }
        }