private float Function2DNet(float x) { net.Inputs[0].value = (x - net.biasX[0]) / net.scaleX[0]; net.Calculate(); return(net.LastNeuronGroup.Neurons[0].OUT * net.scaleY[0] + net.biasY[0]); }
private void посчитатьВыходСетиToolStripMenuItem_Click(object sender, EventArgs e) { net.Calculate(); for (int i = 0; i < net.OutputsCount; i++) { OutputGridView.Rows[i].Cells[1].Value = net.LastNeuronGroup.Neurons[i].OUT; } }
private void button1_Click(object sender, EventArgs e) { net.Calculate(); nGraphics.Refresh(); }
private void CalculateNet(object sender, EventArgs e) { net.Calculate(); Refresh(); }