public ClassifyForm()
 {
     ReadData.readData();
     pretrainedNN = new Neural_Network();
     int[] layers = new int[4];
     layers[0] = 4;
     layers[1] = 3;
     layers[2] = 4;
     layers[3] = 3;
     pretrainedNN.train(layers, 1000, 0.1);
     InitializeComponent();
 }
        private void buttonTrain_Click(object sender, EventArgs e)
        {
            char[]     delimiterChars = { ' ' };
            string[]   words          = textBoxLayers.Text.Split(delimiterChars);
            List <int> layersList     = new List <int>();

            layersList.Add(4);
            for (int i = 0; i < words.Length; i++)
            {
                if (words[i] != "")
                {
                    layersList.Add(Convert.ToInt32(words[i]));
                }
            }
            layersList.Add(3);
            int[]                      layers = layersList.ToArray();
            Neural_Network             NN     = new Neural_Network();
            Tuple <double, double[, ]> t      = NN.train(layers, Convert.ToInt32(textBoxNum_Iteraions.Text), Convert.ToDouble(textBoxEta.Text));
            ConfusionMatrix            CM     = new ConfusionMatrix();

            CM.fillMatrix(t.Item2);
            textBoxAccuracy.Text = t.Item1.ToString() + '%';
            CM.Show();
        }