public void AddNeuron(int index, Neuron n)
 {
     this.neurons[index] = n;
 }
Exemple #2
0
 protected Neuron(Neuron neuron)
 {
     this.activationFunction = neuron.activationFunction;
     this.learningAlpha      = neuron.learningAlpha;
 }
Exemple #3
0
        //public double Bias { get; set; }

        public Connection(Neuron from, Neuron to)
        {
            toNeuron   = to;
            fromNeuron = from;
            Weight     = RandomProvider.random.NextDouble() * 0.5;
        }
Exemple #4
0
        public List <List <List <double> > > BackPropogate(DataSet datain, double learninnRate, double momentum = 0)
        {
            if (PrevDW == null)
            {
                PrevDW   = new List <List <List <double> > >();
                deltaArr = new List <List <double> >();
                for (int i = 0; i < NumLayers; i++)
                {
                    deltaArr.Add(new List <double>());
                    PrevDW.Add(new List <List <double> >());


                    for (int n = 0; n < Layers[i].NumNeurons; n++)
                    {
                        deltaArr[i].Add(0);
                        PrevDW[i].Add(new List <double>());

                        IEnumerable <Connection> outConn = Layers[i].Neurons[n].Connections.Where(r => r.toNeuron == Layers[i].Neurons[n]);


                        int d = 0;
                        foreach (Connection c in outConn)
                        {
                            PrevDW[i][n].Add(0);
                            d++;
                        }
                    }
                }
            }

            ApplyInput(datain.Inputs);
            CalculateOutput();

            Layer currentLayer = Layers[OutputIndex];

            while (currentLayer != Layers[InputIndex])
            {
                Parallel.ForEach(currentLayer.Neurons, new Action <Neuron>((n) =>
                {
                    double error = 0;

                    if (currentLayer == Layers[OutputIndex])
                    {
                        error = datain.Outputs[n.Index] - n.Value;
                    }

                    else
                    {
                        foreach (Connection c in n.Connections.Where(r => r.fromNeuron == n))
                        {
                            error += c.Weight * deltaArr[c.toNeuron.SelfLayer.Index][c.toNeuron.Index];
                        }
                    }

                    error = error * n.Value * (1 - n.Value);

                    deltaArr[currentLayer.Index][n.Index] = error;
                }));

                currentLayer = Layers[currentLayer.Index - 1];
            }

            currentLayer = Layers[OutputIndex];
            while (currentLayer != Layers[InputIndex])
            {
                for (int i = 0; i < currentLayer.NumNeurons; i++)
                {
                    Neuron n = currentLayer.Neurons[i];

                    foreach (Connection c in n.Connections.Where(r => r.toNeuron == n))
                    {
                        double dw = (deltaArr[c.toNeuron.SelfLayer.Index][c.toNeuron.Index] * learninnRate * c.fromNeuron.Value) + (momentum * PrevDW[currentLayer.Index][i][n.Connections.IndexOf(c)]);
                        c.Weight += dw;
                        PrevDW[currentLayer.Index][i][n.Connections.IndexOf(c)] = dw;
                    }

                    n.Bias += deltaArr[currentLayer.Index][i] * learninnRate;
                }



                currentLayer = Layers[currentLayer.Index - 1];
            }


            return(PrevDW);
        }
Exemple #5
0
        public void AddConnection(Neuron neuron, bool to, double weight = 0/*, double bias = 0*/)
        {
            Connection c;

            if (to)
                c = new Connection(this, neuron, weight);
            else
                c = new Connection(neuron, this, weight);

            this.Connections.Add(c);
            neuron.Connections.Add(c);
        }
Exemple #6
0
 public Neuron(int index, Layer initLayer, Neuron.ActivationType actType = ActivationType.SIGMOID, double bias = 0)
 {
     Index = index;
     Connections = new List<Connection>();
     SelfLayer = initLayer;
     ActType = actType;
     Bias = bias;
 }
Exemple #7
0
        public Layer(int index, int numNeurons, Neuron.ActivationType actTye = Neuron.ActivationType.SIGMOID, IEnumerable<double> initBias = null)
        {
            Index = index;
            NumNeurons = numNeurons;
            ActType = actTye;
            Neurons = new Neuron[NumNeurons];

            if (initBias != null)
            {
                for (int i = 0; i < NumNeurons; i++)
                {
                    Neurons[i] = new Neuron(i, this, ActType, initBias.ElementAt(i));
                }
            }

            else
            {
                for (int i = 0; i < NumNeurons; i++)
                {
                    Neurons[i] = new Neuron(i, this, ActType);
                }
            }
        }
Exemple #8
0
 public Connection(Neuron from, Neuron to, double weight)
 {
     toNeuron = to;
     fromNeuron = from;
     Weight = weight;
     //Bias = bias;
 }
Exemple #9
0
 //public double Bias { get; set; }
 public Connection(Neuron from, Neuron to)
 {
     toNeuron = to;
     fromNeuron = from;
     Weight = RandomProvider.random.NextDouble() * 0.5;
 }