private static void DQN(IEnumerable <BatchInputWrapper> trainData, IEnumerable <BatchInputWrapper> cvData) { using (MathOperationManager mathManager = new MathOperationManager(MathType.GPU)) { var hiddenLayers = new List <int>(); hiddenLayers.Add(10); hiddenLayers.Add(5); DQNNeuralNetworkConfiguration config = new DQNNeuralNetworkConfiguration(5, hiddenLayers, 12); config.LossFunction = LossFunctionType.BellmanError; config.Epochs = 20; config.StepSize = (float)0.1; using (DQN nn = new DQN(mathManager, config)) { nn.MiniBatchStochasticGradientDescent(trainData, cvData); } } }
private static void DQN(IEnumerable<BatchInputWrapper> trainData, IEnumerable<BatchInputWrapper> cvData) { using (MathOperationManager mathManager = new MathOperationManager(MathType.GPU)) { var hiddenLayers = new List<int>(); hiddenLayers.Add(10); hiddenLayers.Add(5); DQNNeuralNetworkConfiguration config = new DQNNeuralNetworkConfiguration(5, hiddenLayers, 12); config.LossFunction = LossFunctionType.BellmanError; config.Epochs = 20; config.StepSize = (float)0.1; using (DQN nn = new DQN(mathManager, config)) { nn.MiniBatchStochasticGradientDescent(trainData, cvData); } } }